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ABSTRACT 
 
Yield predictions based on remotely sensed data are not always accurate. Adding 
meteorological and other data can help, but may also result in over-fitting. 
Working with American Crystal Sugar, we were able to demonstrate that the 
relevance of independent variables can be tested much more reliably when not 
only yield but also quality attributes are known, such as the sugar content and the 
sugar lost to molasses for sugarbeets. The problem of potentially over-fitting the 
data, when working with a large number of independent variables, is known as the 
curse of dimensionality. We show that the over-fitting problem in selecting 
variables can be effectively countered by increasing the number of dependent 
variables. An increased dimensionality on the side of dependent variables avoids 
that an independent variable may be considered relevant because similar values 
accidentally result in similar values of the dependent variable. We show that such 
reasoning can be very effectively applied to the problem of how to preprocess 
massively available data such as rainfall. Using rainfall data with a finer 
granularity than the aggregate over the full year can clearly hold benefits. In the 
absence of quantitative techniques, researchers and crop consultants have to 
decide how to preprocess rainfall data based on educated guessing alone. We 
provide a computational approach to answering such questions quantitatively. 
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INTRODUCTION 
 
     Prediction of total annual quantities is notoriously difficult, because the 
number of years that can be considered comparable is typically small. These 
problems have been extensively known in statistics, and are aggravated when data 
are from production fields rather than the result of designed experiments 
(Glymour et al., 1997). In the case of the prediction of crop yield, it may appear 
that the large number of fields gives rigor to predictive approaches. However, it is 
important to realize that many factors, such as rainfall or temperature, affect a 
large number of fields similarly. The outcomes of all fields in one year may have 
very little bearing on the outcome of any one field in the next year. 
     Some approaches to this problem model plant growth depending on 
meteorological observations (Steduto et al., 2008). However, the growth 
conditions are changing systematically across years due to changes in drainage, 
new varieties, and other factors that cannot be easily controlled. In this paper we 
pursue a data-driven approach, in which the goal is to derive relevant factors 
entirely from the data. The availability of large quantities of satellite image and 
meteorological data, and increasingly data from sensors, suggest that this will 
become a more important approach in the future.  The move from model to 
completely data-driven approaches follows in the footsteps of other “big data” 
areas. For example, in text applications that used to use grammatical structure 
(Smeaton, 1992), it is now common to only use the data (Wang, 2007). Similarly, 
we attempt to extract statistically sound information from data directly, without 
building models based on assumptions about any underlying structure. 
     Prediction problems, for which the number of observations of the dependent 
variable is small in comparison with the number of independent variables, have 
the associated risk of over-fitting. In the yield prediction problem, there may be 
data on several thousand fields available. However, since the weather conditions 
are similar in fields that are geographically close, the problem may still be ill-
conditioned, corresponding to a small number of fully independent observations. 
In addition, the number of available climate variables, such as rainfall and 
temperature, each of which is available over time, is inherently large. As a result, 
it is important to consider what is often termed the “curse of dimensionality” 
(Verleysen and François, 2005). This term is based on the notion that each 
independent variable can be viewed as a dimension of the space of variable 
combinations. If the space of independent variables is large, the dependent 
variable, i.e. yield, offers only little evidence for making a reliable prediction. 
     In this paper we show that considering multiple dependent variables as well as 
multiple independent variables is a strategy for defeating the curse of 
dimensionality. Yield is not the only variable that is relevant as an outcome of the 
plan growth process. Many crops are characterized by quality variables as well as 
their weight. In particular, we consider sugarbeets for which the sugar content and 
the sugar lost to molasses, SLM, act as quality attributes. Considering yield and 
the two quality variables together, results in a space of possible outcomes that is 
itself 3-dimensional. Evaluating variables against this 3-dimensional space 
provides additional evidence for which variables are relevant to the growth 
process. While crops coming from two fields may accidentally coincide in their 



weight, they are less likely to coincide in weight and the quality variables, unless 
the growth conditions are indeed equivalent with regard to the outcome.  
 

CONCEPTS 
 
     It is common in machine learning and data mining to consider variables or 
attributes as dimensions in a vector space. This interpretation allows applying any 
mathematical techniques that are defined on vector spaces, and it can also be 
useful for visualizing data. Dimensions up to three can be visualized within our 
three spatial dimensions. Since we also consider vector spaces of higher 
dimensions, we will use a parallel coordinate representation (Inselberg 1991), in 
which each dimension is represented as if it were a time point in a time series, i.e. 
each dimension corresponds to a position on the x-axis of a graph, and its value is 
indicated in the y direction. Coordinates that belong to the same data point, i.e. in 
this case field, are connected through lines. Fig. 1 shows two examples of a 
visualization of yield, sugar, and SLM for sugarbeet fields of the American 
Crystal Sugar Company. A subset of fields is highlighted in black, while the 
remaining ones are shown with a gray color. It can be seen that when there is 
much rain late in the growing season (left panel), sugarbeets typically don’t have 
a very high sugar content or SLM, and the yield is never very low. In contrast, 
when there is very little rain late in the growing season (right panel), low yields 
are more common. Overall, the distribution of the values for low rainfall late in 
the season (black lines) is much more similar to the overall distribution (gray 
lines) in the right panel than in the left panel. Knowing which subsets have a 
distribution that is substantially different from the overall distribution of data 
points, is of interest beyond the prediction question (Denton and Wu, 2009). The 
comparison of the subset distribution with the overall distribution is often done 
using the Kullback-Leibler, K-L, divergence (Denton et al., 2010), which will be 
discussed in the next section.  

 
Fig. 1: Parallel-coordinate representation of yield, sugar, and SLM in sugarbeets, 
with subsets highlighted that correspond to (a) high or (b) low rainfall in the last 
two months of the growing season. 
 



 
Fig. 2: Schematic of a parallel-coordinate representation of two sets of variables 
for the same agricultural field, where a cluster with regard to the variable in the 
left panels may (top) or may not (bottom) correspond to a cluster in the right-
hand-side panels. 
 
The K-L divergence can be calculated for subsets of points that are defined by 
having a particular property, such as high or low late season rainfall. It can also be 
calculated for the groups of points that are themselves constructed based on multi-
dimensional data. In this paper we propose a technique for evaluating the 
usefulness of processing steps by grouping data points using clustering, and then 
evaluating those clusters using the K-L divergence. Fig. 2 illustrates that concept. 
On the left hand side, a parallel-coordinate representation of two variables can be 
seen. These two variables could, for example, be the early and late season 
aggregates of the rainfall in the field. In practice we will not limit ourselves to two 
variables but will consider as many as 180 when considering daily rainfall values. 
Assume that the black lines in the top and bottom panel show two clusters of 
similar fields. Those fields not only have rainfall values associated but also the 
harvest variables. Since those variables were not used in the clustering, there is no 
guarantee that they will show any structure. The top row shows a case in which 
the cluster in the rain variables corresponds to a tight set of harvest variables, 
corresponding to a high K-L divergence. The bottom row shows no pattern in the 
harvest variables (right panel) in comparison with the overall distribution. That 
means that the K-L divergence is small. We consider the average K-L divergence 
over all clusters in our evaluation of the suitability of the preprocessing strategy. 
 

K-L Divergence based on Voronoi cells 
 
     The K-L Divergence is a measure for the degree to which a probability 
distribution P differs from a reference distribution Q. Eq. (1) shows the definition 
whereby the logarithm of the ratio of differential probability distributions of P 
over Q is integrated according to the distribution of P. 
 



 
Fig. 3: Definition of cells for the estimation of probability distributions. 
 

(1) 
     Common implementations of the K-L divergence assume that the points in 
distribution P and Q are independently distributed (Perez-Cruz, F. 2007). Since 
we want to compare a subset distribution with the overall distribution of points we 
estimate probabilities over Voronoi cells of the points with the item (black points 
in Fig. 3). A Voronoi cell contains all those points that are closer to its defining 
(black) point than to any other. 
 

Comparison with Multivariate Regression 
 
     The concept of considering multiple dependent variables in regression 
problems is known as multivariate regression. When linear regression is used, the 
prediction problem can be decomposed into independent regression models for 
each of the dependent variables. That means that linear multivariate regression in 
itself is not suitable for identifying those variables that have an effect on the 
combination of dependent variables. Other approaches that have been developed 
recently to make use of the potential of a joint evaluation of multiple dependent 
variables include graphical models (Wang, 2013). The research area is still new 
since, for well-conditioned regression problems, the separability of the linear 
regression problem based on dependent variables means that a combined 
evaluation of dependent variables is not expected to improve accuracy. The yield 
prediction problem critically depends on the ability of the model to extrapolate 
beyond the training data, since a new year is likely to show rainfall pattern, for 
which there is not close precedent available. It is this extrapolation for which our 
evaluation is shown to result in more stable results. 
 

Data Preprocessing 
 
     The results in this paper are based on sugarbeet fields in the valley of the Red 
River of the North, covering eastern North Dakota and northwestern Minnesota. 
Yield, sugar, and SLM data were provided by American Crystal Sugar Company. 
Rainfall is processed from data that is provided by the National Weather Service. 



The processing is done using GRASS Geographic Information System software. 
Rainfall for a field is assigned based on the shortest distance to NWS grid points. 
We also use Growing Degree Days, GDD, a commonly used measure of the effect 
of temperature on growing conditions.  
     Rain data are considered relative to the planting day for each field. Further 
aggregation is done using bins of size 7 for weekly, 30 for monthly, and 90 for the 
per-season evaluation. Yields are corrected based on the average weight of 
sugarbeets on the respective harvest day, relative to the mean harvest day for the 
year. I.e., if the harvest day is early in the season, when the average yield is lower 
than the mean for that year, the yield is corrected to a higher effective value. 
 

Algorithm 
 
     The algorithm can be summarized as follows:  The rainfall values are clustered 
using k-means clustering (Jain, 2010) with k=20. For each of cluster, yield, sugar, 
and SLM records are extracted and the K-L divergence between the set defined by 
the cluster and the set of all records is calculated using the Voronoi-cell-based 
algorithm. The resulting K-L divergences are averaged. A high K-L divergence 
indicates a strong relationship between rainfall data and crop properties. The 
process is repeated for different rain aggregation and processing steps. 
 

EXPERIMENTS 
 
     Fig. 4 shows an example cluster of rainfall values in the left panel together 
with the corresponding crop properties in the right panel. An example with a high 
K-L divergence is chosen to illustrate the concept. Note how the cluster members 
have consistently high yield, and very low SLM with intermediate to low sugar 
content.  

 
Fig. 4: Example pattern with cluster members highlighted in black and other 
fields shown in gray. The left panel shows rainfall aggregated to months, while 
the right panel shows yield, sugar, and SLM in parallel coordinate representation. 



 
     Fig. 5: R2 values for linear regression based on rain data with varying number 
of dimensions, for models built by leaving out one year in each case. 
 
To illustrate the motivation for using the K-L divergence, we will first consider 
traditional linear regression-based approaches for evaluating the quality of 
prediction. When using linear regression, it is common to use the R2 value as a 
measure of how accurate the prediction is expected to be. Fig. 5 shows that R2 

values increase with the number of rain dimensions. The conclusion appears 
straightforward that daily values contain the most useful information for the 
prediction. One may argue that the prediction based on rainfall alone has such 
small R2 values that a prediction is simply not reliable. The right panel shows the 
same linear regression, but with GDD as additional variable. As expected, the 
overall R2 values are slightly higher. It is also worth noting that, even in this 
setting, daily rainfall values are expected to give the best model. 
     This result is counterintuitive, since the total yield should not matter strongly 
affected by whether rain falls on a particular day or on the next day during the 
growing season. Indeed, when doing the actual prediction, the results are 
different, and daily rainfall gives in the poorest predictions over most 
experimental scenarios. Fig. 6 shows the error in the total annual yield based on 
linear regression, i.e. the absolute value of the difference between the predicted 
overall yield per acre and the actual value. The left panel only uses rainfall, while 
the right panel also uses the GDDs. All but one year are used for creating the 
model, and the one remaining year is used for the evaluation. Each line 
corresponds to a different year. It can be seen that while the dependence on the 
number of rain bins is somewhat erratic in both cases, daily rainfall values tend to 
have higher error rates. Note that the overall prediction errors are not as high as 
one might have expected based on the R2 values in Fig. 5. In the right panel, error 
rates are as low as 0.2 tons per acre, which corresponds to less than 1% of the 
total. This can be explained by realizing that the R2 values are a measure of the 
quality of prediction at the level of individual fields, and that many of the errors in 
that prediction compensate each other in the prediction of the annual total. 



 
Fig. 6: Error in overall predicted yield using linear regression, with the left panel 
showing the regression results based on rainfall only, and the right panel the 
regression based on rainfall and GDD. 
 
One could consider selecting the processing strategy by averaging over annual 
totals and using the processing strategy that results in the lowest average errors. 
However, it is important to realize that that amounts to selecting a model based on 
a very small number of observations, in particular one per year. Yet another 
alternative could be to use the per-field error rate, which is shown in Fig. 7. It can 
be seen that when only rainfall is used, the per-field analysis results in 
contradictory evidence.       For 2011, the error rate consistently decreases with 
the number of rainfall dimensions, while for 2007 and 2008 it consistently 
increases. In the other two years intermediate values are optimal.  

 
Fig. 7: Error in per-field predicted yield using linear regression, with the left panel 
showing the regression results based on rainfall only, and the right panel the 
regression based on rainfall and GDD. 
 



When GDD is added to the independent variables, the results that are shown in 
the right panel of Fig. 7 are so flat that no reliable conclusions can be drawn on 
what processing to use. In fact, among the 5 years that are considered, 4 show a 
different optimal selection for the number of dimensions.  
     These concerns motivate using the K-L divergence as a measure for evaluating 
the usefulness of preprocessing strategies. Fig. 8, left panel, shows that when the 
K-L divergence is calculated over the same sets of data as the models in Figures 6 
and 7, the results show a somewhat more consistent behavior. Monthly rainfall 
values have the highest K-L divergence for each data set. Note that the K-L 
divergence algorithm was limited to 2 or more dimensions. These results support 
the notion that daily or weekly rainfall aggregation is not as useful as the R2 
values of the linear model would have suggested. However, aggregation by 
season does not emerge to be as stable as the evaluation on annual totals would 
have suggested.  
     The right panel of Fig. 8 shows further preprocessing strategies. It can be 
hypothesized that high rainfall values in a single day may not help plant growth as 
much as rain that falls over several days. For that reason, we test the effect of only 
considering rain of up to 1 inch within a given day, shown as “min(x,1)” in the 
right panel of Fig. 8. Any further rainfall is ignored in the aggregation of results. 
This processing can, indeed, be seen to result in a higher K-L divergence than the 
default processing. If cutting off high rain values is beneficial, one may consider 
using rain logarithmically, shown as “log(1+x)”. However, that approach can be 
seen to be less successful. Yet a different thought is that low rainfall is not 
absorbed into the soil and rainfall of less than 0.2 inches should be ignored, 
shown as “max(x-0.2,0)”. Again, that hypothesis is not supported by the data, 
suggesting that low rainfall is still, in some form, absorbed by the plant, such as 
through the leaves. Each of the processing strategies confirm the conclusion that 
weekly rainfall aggregation gives the most stable estimates overall. 

 
Fig. 8 K-L divergence for different subsets of the data (left panel) and different 
preprocessing of the rainfall data (right panel). 
 
 
 



CONCLUSIONS AND FUTURE WORK 
 
     In summary, we have shown that crop quality information can be effectively 
employed in evaluating preprocessing strategies for variables that are to be used 
in predicting yield across years. Using high-dimensional data in prediction carries 
the risk of the “curse of dimensionality”. We have shown that the Kullback-
Leibler divergence calculated over clusters in the in the multi-dimensional data 
can be used to identify those preprocessing strategies that result in the most 
reliable predictions.  
     While this paper focuses on rainfall and temperature data, the extension to 
remotely sensed data, such as NDVI from satellite imagery, is mathematically 
straightforward, and the questions to be answered rather more varied:  The visible 
biomass for sugarbeets does not correlate to beet size in a straightforward manner. 
Further complicating factors include the prevalence of missing data due to clouds, 
and complications in distinguishing leaf coverage from chlorophyll content when 
working with satellite data  (Haboudane et al., 2002). Any of these questions lend 
themselves to an evaluation of different preprocessing strategies. 
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