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Abstract. As the world population continues to grow, the need for efficient agricultural production 
becomes more pressing.  The majority of farmers still use manual techniques (e.g. visual inspection) to 
assess the status of their crops, which is tedious and subjective.  This paper examines an operational 
and analytical workflow to incorporate unmanned aerial systems (UAS) into the process of surveying 
and assessing crop health.  The proposed system has the potential to significantly reduce time, labor 
and cost while also yielding more accurate results, allowing farmers to better estimate their yield and 
obtain quantifiable data on troubled areas. The airframe for this study was built from a combination of 
hobby-grade and scientific components.  The aircraft incorporate avionics such as a Pixhawk autopilot 
system, GPS, and data telemetry links.  This allows for completely autonomous flight paths to obtain 
coverage.  The main sensor packages evaluated on the UAS for this study were a digital camera and a 
multi-spectral imager. Overlapping photos were taken during flight to ensure that there were no gaps in 
data.  Post flight the pictures were geo-located in a world fixed frame (e.g. WGS-84).  Data was 
collected across several flight tests conducted in Brisbane, Australia at the Samford Ecological 
Research Facility (SERF).  The primary output was a georeferenced, orthomosaic of the area in the 
visible light spectrum. Corresponding normalized difference vegetation index (NDVI) maps to assess 
vegetation health and vigor as well as a digital elevation models (DEM) that represents the terrain’s 
surface in 3D were developed as well.  The paper describes the process of obtaining and analyzing 
these results and compares data products generated using software such as QGIS, MicaSense Atlas, 
and Agisoft Photoscan Professional.  Additionally, analysis accuracy, best practices, and improvements 
of this type of aerial surveying are discussed.   
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1.0  INTRODUCTION 
In catering for a growing, worldwide demand for agricultural goods, the need to improve 
traditional farming practices with modern methods and technologies has become increasingly 
evident. Therefore, the facilitation of timely, cost efficient, and accurate operational practices is 
critical in assessing and managing agricultural production. Precision agriculture (PA) aims to 
facilitate this process through collecting and evaluating practical, real-time environmental data 
in order to establish and apply predictive management.  

In recent developments of PA, UAS are employed in order to visually inspect crop fields for 
areas of health and distress. UAS have become prevalent in a variety of military, civil, and 
commercial applications. The integration of UAS in military operations has seen advantages of 
greater and safer surveying capacity during mission (Lum, 2009), limiting the risk to human life. 
In civil applications, the commercialization of UAS technology has improved economic and 
environmental efficiency and security (Association for Unmanned Vehicle Systems 
International, 2013). 

The United States Federal Aviation 
Administration (FAA) allows 
commercial and public entities to 
operate UAS in the National 
Airspace System (NAS) on a case-
by-case basis via a Certificate of 
Authorization (COA) or Section 333 
exemption (Federal Aviation 
Administration, 2012).  International 
countries such as Australia plans to 
follow in suit and legalize the use of 
commercial UAS (Griffith, 2015). 
Accompanied by federal support 
and development, it will soon be 
common for businesses in the 
United States and Australia to use 
UAS to augment human agricultural 
management activities. 

 

Fig 1.  Healthy vegetation has a higher reflectance 
within the nIR region (MicaSense, 2016). 

UAS, coupled with remote sensing techniques like multispectral imaging, are becoming more 
fundamental within contemporary applications of PA. The use of imaging techniques such as 
NDVI maps permits higher wavelength data to be detected and used to analyze information 
more accurately.  Plants absorb solar radiation for the process of photosynthesis, and plants 
absorb more chlorophyll electromagnetic energy within the blue (475nm) and red (660nm) 
spectrum.  A healthy plant often absorbs more energy within the visible spectrum and as a 
result, the reflectance is lower within the visible range (Fig 1). Fig 1 also shows that healthy 
vegetation induces a higher reflectance within the near-infrared (nIR) region. This is again due 
to the presence of chlorophyll within healthy plants as more chlorophyll resists the absorption 
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of longer wavelengths and hence reflects nIR (Ivanova, Bartsev, Pochekutov, & Kartushinsky, 
2006).  

These fundamentals enable the use of the NDVI, which uses reflected bands of 
electromagnetic radiation to determine a scalar measure of plant health and vigor.  A standard 
expression for NDVI is given by Equation 1 (NASA, n.d.). 

 
𝑁𝑁𝑁𝑁 =

𝑛𝑁𝑛 − 𝑟𝑟𝑟
𝑛𝑁𝑛 + 𝑟𝑟𝑟

 Equation 1 

Where: 𝑁𝑁𝑁𝑁 =  𝑛𝑛𝑟𝑛𝑛𝑛𝑛𝑛𝑟𝑟 𝑟𝑛𝑑𝑑𝑟𝑟𝑟𝑛𝑑𝑟 𝑣𝑟𝑣𝑟𝑣𝑛𝑣𝑛𝑛𝑛 𝑛𝑛𝑟𝑟𝑖 
𝑛𝑁𝑛 =  𝑛𝑟𝑛𝑟 𝑛𝑛𝑑𝑟𝑛𝑟𝑟𝑟 𝑛𝑛𝑣ℎ𝑣 𝑏𝑛𝑛𝑟 
𝑟𝑟𝑟 =  𝑟𝑟𝑟 𝑛𝑛𝑣ℎ𝑣 𝑏𝑛𝑛𝑟 

Equation 1 can be used to determine the state of vegetation health and establish plans for 
management.  Remote sensors on UAS can scan crops to look for natural health problems 
(e.g. need for more water or fertilization), inspect for unexpected diseases, pests, and growth 
of invasive species (Nixon, 2016). The eventual goal of UAS is to collect data regarding the 
state of crop and then use it to autonomously control hydration, pesticide, and fertilizer 
adjusting systems to improve crop health.  

UAS research, and the quest to meet this goal, is anticipated to be extremely valuable to the 
Australian economy as the agriculture industry is valued at roughly $155 billion, making up 
12% of the gross domestic product (GDP) (Australian Bureau of Statistics, 2012). Moreover, 
UAS research could result in major cost reductions for farmers, thereby permitting reallocation 
of financial budgets and an increase in GDP relating to agricultural production. The Invasive 
Animal Cooperative Research Centre and the Australian government have estimated that the 
cost of feral pests like pigs, wild dogs, and rabbits alone is approximately $1 billion each year 
in lost agricultural productivity (Pimentel, Lach, Zuniga, & Morrison, 2002). As a result, UAS 
devices can provide significant benefits and revolutionize the Australian agriculture industry. 

However, widespread use of agricultural UAS is currently restricted by the weight, cost and 
accessibility of UAS on the market today.  Often, the high cost of research and development 
for crop management is not viable for small-scale agricultural businesses. According to the 
Australian Bureau of Statistics (ABS), “the majority of Australia’s farms are comparatively 
small,” with 55% having an estimated value less than $100,000 in 2010-2011 (Australian 
Bureau of Statistics, 2012). Therefore, it is necessary to establish a versatile, cost-effective 
range of UAS that meet Australia’s Civil Aviation Safety Authority’s (CASA) conditions for use 
within different regions and PA applications. 

To investigate feasibility of a low-cost UAS, two aircraft were built by the University of 
Washington (UW) and the Queensland University of Technology (QUT).  These systems were 
equipped with a basic point-and-shoot digital camera (Canon S100) and a multispectral imager 
(MicaSense RedEdge) (MicaSense, 2016). The intent is to produce affordable drones that cost 
$1000 to $6500 USD and use 3D mapping and photography to gather data over a specified 
area.  Note that the large variance in price depends on the quality of the sensor carried by the 
vehicle.  The data collected from the UAS can then be used by farmers to alter the surrounding 
environment and conditions to improve the health of vegetation in the area.  By being able to 
use drones to collect information regarding the health of plants, harvests will correspondingly 
become more fruitful.  While agriculture is expected to make up 80 percent of the potential 
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market for drones (Wihbey, n.d.), there are additional applications of this research. For 
example, the UAS developed in this research could also be used for poaching observation, 
forest fire prevention (Lum, Summers, Carpenter, Rodriguez, & Dunbabin, 2015), and search 
and rescue (Lum, 2010).  

2.0  EXPERIMENTAL HARDWARE AND METHODOLOGY 
2.1 Hardware 
In this experiment, two autonomous aircraft, named Exodia and Little Wing (Fig 2), were 
custom fitted with the previously described imaging sensors and flown over a tree-lined, open 
field at SERF (Queensland University of Technology, 2015) in Brisbane, Australia, to collect 
data on the native vegetation using varying imaging techniques. The Exodia aircraft was 
equipped with the MicaSense RedEdge multi-spectral imager while the Little Wing aircraft 
carried a Canon S100 camera. Both UAS were based on a Skywalker 1900 airframe and 
equipped with a Pixhawk autopilot, a GPS unit, transceivers, and various batteries to run 
onboard systems. The ground station consisted of a laptop computer running the popular open 
source Mission Planner software (Osborne, 2016).  On Exodia, a second GPS was added to 
provide geotagging information for the MicaSense camera system. 

Each imaging sensor was 
internally mounted in the belly 
of the aircraft such that it 
looked downwards in level 
flight.  On Exodia, a custom 
remotely actuated bay door 
was added to protect the 
sensor during landing. On 
Little Wing , a Mobius Action 
Camera was fitted on the 
forward exterior canopy. This 
camera transmitted live video 
to the ground station to 
monitor the plane’s flight from 
the ground. 

  

Fig 2. Little Wing post construction. 

2.2 MicaSense Camera (Exodia Payload) 
The MicaSense RedEdge camera is a five channel multi-spectral imaging system. The five 
spectrums (image channels) that are captured are: the visible light spectrum of red (660 nm), 
green (550 nm), and blue (475 nm) as well as two bands of invisible light, namely the red-edge 
(725 nm), and near-infrared (825 nm).  At every image capture, five different images are saved 
on the SD card in the MicaSense camera. A calibration photo was taken at the start and end of 
each run to provide corrections for lighting changes during the mission.  
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2.3 Ground Testing 
Ground testing was conducted on QUT’s Gardens Point campus where all system sensors and 
functions were calibrated and tested.  Extensive battery tests was also conducted to estimate 
maximum lifespan during flight.  The batteries were estimated provide approximately 30 
minutes flight time, placing an upper bound on mission planning.  During ground testing, the 
UAS was also connected to Mission Planner to ensure that the plane could follow waypoints 
and the software would update in response. 

2.4 Experimental Execution 

 

Fig 3. Flight test data showing trajectory of aircraft 
during a modified parallel track mission. 

Each UAS had three experimental 
trials during which different flight 
paths were tested.  The variations 
in flight paths were used to gather 
images from different angles to 
create a more cohesive collection 
of aerial survey data.  Furthermore, 
by testing different flight paths, the 
accuracy and ability of each aircraft 
to follow pre-planned pathways 
could be evaluated.  The different 
types of flight paths tested were 
standard parallel track and creeping 
line patterns.  In addition, a 
variation of the parallel track pattern 
where the aircraft skips successive 
rows and then returns to them later 
in the flight was tested to allow 
tighter inter-track spacing while 
respecting aircraft turn rate 
constraints (Fig 3). 

3.0  DATA REDUCTION 

3.1 Flight Logs 
Aircraft trajectory was automatically logged using either telemetry logs (tlogs that are 
communicated to the GCS during a mission) or on board the aircraft using data flash logs. This 
information was later used in conjunction with Google Maps to create .KML files, which 
showed the trajectory of the flight paths overlaid on a 3D map of the area. Furthermore, by 
using information from the logs, the researchers were also able to assess the ability of the 
aircraft to follow flight paths.   

In addition to the tlogs, basic flight logs were recorded. These logs included general 
information about each of the flights such as, the purpose of each flight, take off times, and 
descriptions of unforeseen events.  
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3.2 Image Manipulation 
3.2.1 Geotagging 

Each photo taken by the Canon S100 was geotagged post flight using position information 
extracted from the flight log data.  The photos acquired by the MicaSense camera were 
geotagged automatically at the time of acquisition.  

Over the three Little Wing flights, the Canon camera captured 115 photos. Using geotagged 
images, ortho-rectified mosaic images were created. These were primarily processed using 
Agisoft PhotoScan Professional and visualized using Google Earth.   

3.2.2 Preprocessing (Rectification and Cropping) 

The MicaSense RedEdge camera takes multi-spectral images by capturing an individual 
picture at different wavelengths with each of its five lenses. This resulted in over 1,400 in-flight 
images after three data collection flights.  Unnecessary pictures were manually culled from the 
data set.  This resulted in 580 picture that were suitable for data reduction (corresponding to 
116 composite images). 

The first step is to rectify each set of five simultaneously captured images. Since each of the 
lenses are slightly offset and orientated differently from one another, there was a small 
misalignment between each set of five images for each composite image.  The purpose of 
rectification was to align the images and correct the offset of each lens. This also allowed the 
multi-spectral data to be consolidated into a single, cohesive, 5-channel image. 

Following image rectification, each 5-channel image was cropped to remove non-informative 
(non-overlapping) portions around its edges (Fig 5).  

  

Fig 4. Poor image alignment without 
rectification. The individual spectral bands do 
not overlap resulting in a blurred image. 

Fig 5. Correct image after image rectification 
(note that cropping has not yet occurred as 
seen by the left and lower edges). 

The rectified and cropped photos were used to generate NDVI images and ortho-rectified 
mosaics.  The MicaSense Atlas software served as a secondary system to generate maps as 
well for the purposes of comparison and validation. 
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3.3 Software 
3.3.1 Agisoft Photoscan Professional 

Agisoft Photoscan Pro (Agisoft, 2016) was the selected for creating the DEMs and 
orthomosaics. It has an intuitive workflow that consists of four basic steps: image alignment, 
dense point cloud formation, mesh creation and texture creation. Minimal user input is required 
when processing imagery. The main task required by the user is to clip outliers in the dense 
point cloud stage to minimize the error in the final model. 

A software package called CloudCompare (CouldCompare, 2015) allows the user to compare 
differences in dense point clouds. The quality of medium and high density models created in 
Photoscan can be analyzed using this freeware.  

Both the dense point cloud models created in Agisoft were imported into CloudCompare. The 
differences between the images were then contrasted with the results shown in Fig. 6. The red 
represents the medium density model, whereas the yellow represents the high density model. 
Therefore, with higher rendering quality the model becomes more condensed and has fewer 
scattered points. As there appeared to be less scattering within the high-density image, it was 
chosen for analysis. 

The blue model on the right, in Fig. 6, shows the medium quality rendered model with the blue 
section showing the high correlation of points between the high density model. The green 
shows the points that only have a weak correlation to the high density model. The red points 
show points in the medium image that have a very weak correlation with the high model 
(outliers).  

 

Fig. 6.  High & medium density models overlaid (left) and differences in medium density cloud 
model (right). 
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3.3.2 Ground Control Points 
To have reference points and to increase the GPS 
accuracy of the model, ground control points 
(GCPs) were included. Upon adding the GCPs to 
the model, it became apparent that one of the 
coordinate systems did not calibrate correctly (see 
Fig 7). To account for this disparity, the markers in 
Agisoft were moved to a position that would better 
reflect the objects. Following this correction, 
Photoscan then calculated the error in the relevant 
marker positions. These processes are important 
in order to rectify anomalies and ensure high GPS 
accuracy of the model for accurate mapping.  

Fig 7. Exposing GPS inaccuracy 

Following this correction, Photoscan then calculated the error in the relevant marker positions. 
Using the calculated errors, the locations of the markers were amended as shown in Fig. 8. 

  

Fig. 8.  Ground control points (left) and amended markers (right) 

3.3.3 QGIS 
Once the data was processed in Agisoft Photoscan Pro, the resulting orthomosaics were the 
then analysed in QGIS (Creative Commons, n.d.). QGIS is a free and open source 
geographical information system.  

The NDVI images were created by selectively showing the light bands using Equation 1; this 
process yielded a grayscale image. A color map, from green to red, was then applied to the 
photo.  Green represented high NDVI values and healthy vegetation, while red represented 
low NDVI values and poor vegetation health (Fig 10). The reason why high and low NDVI 
values represented healthy and unhealthy vegetation, respectively, is that a healthy plant in 
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the process of photosynthesis will absorb visible light and reflect a significant portion of near-
infrared light (SimWright, 2007). 

3.3.4 Camera Accuracy and Image Error Estimation 

 
Fig 9. Agisoft generated report on camera overlap. 

Photoscan also has the capacity to 
generate color mapped DEM images, 
which were used to verify the validity of 
the results found in QGIS (see Fig 11).  

Overlapping images is essential to 
photogrammetry to gain an accurate 
orthomosaic. Agisoft recommends 
+80% forward overlap with a side 
overlap of 60% (Agisoft, 2016). Shown 
below in Fig 9 is an image generate by 
Agisoft that shows the number of 
overlapping images correlated to their 
position. 

The blue center of the map represents 
that there were >9 images in that 
region. In areas where there are less 
images, hence, less overlap it can be 
inferred that these regions of the model 
may be less reliable.   
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Fig 10. QGIS color mapped NDVI (left) and color mapped DEM (right). 

 
Fig 11. Agisoft Photoscan Pro generated NDVI map (left) and DEM (right). 
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4.0  RESULTS 
The main result of this analysis is a set of NDVI and DEM models of the survey area. 
 
4.1 NDVI Maps 
4.1.1 Accuracy 
NDVI maps were generated and the data values of the NDVI were extracted from the image to 
enable crop analysis (Fig 12). In comparison to the professionally created NDVI maps via 
MicaSense, the images reproduced from Agisoft and QGIS are very similar. The ability to 
create and manipulate the data without the need of a third party allowed a greater range of 
flexibility with the output and final data representation.   

In order to perform an engineering analysis of multispectral images, Matlab was used to 
extract the NDVI information from the images reproduced in QGIS.  

The analysis from QGIS was compared to the output given by MicaSense to verify the image 
accuracy and visually compare the NDVI maps.  In Fig 14, the two images created are very 
similar.  However, it can be observed that the MicaSense NDVI image detects more subtle 
variations in vegetation health.  Further research could be directed at determining if the QGIS 
model could be altered to increase its accuracy. 

 

Fig 12. NDVI map generated from the data 
collected from Exodia flight 4 

 

Fig 13. Binary occupancy map 
corresponding to Fig 12 

Post processing allowed NDVI values to be determined at each pixel point, yielding more 
relevant and practical information. Average NDVI values can be determined over a specified 
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area for easy recognition of the comparative health of vegetation across different sections of 
the site. The percentage of vegetation deemed healthy over an area can also be recognized 
through the specification of appropriate NDVI thresholds.  

After obtaining the average NDVI values over a specified area, the quantified data was used in 
order to generate occupancy maps (Lum, 2006). A binary occupancy map (Elfes, 1989) 
indicating areas with an average NDVI within the range of 0.6 – 0.8 (in black) was generated 
(Fig 13).   

The NDVI values were also analyzed at each pixel and NDVI values from 0.6 – 0.8 deemed as 
healthy vegetation were summed to determine a percentage of healthy vegetation (Pettorelli, 
2013). Fig 13 indicates that the area surveyed at SERF that has a healthy vegetation 
percentage of approximately 27.9%. The employment of NDVI to establish percentage of 
healthy vegetation within an area enables farmers to evaluate and assess the state of their 
crops, as well as apply methods and strategies to improve yield and quality of agricultural 
produce.  

4.1.2 Validation of Data 

The analysis from QGIS was compared to the output given by MicaSense to verify the image 
accuracy and visually compare the NDVI maps. In Fig 14, the two images created are very 
similar; however, it can be observed that the MicaSense NDVI image detects more subtle 
variations in vegetation health.  

 
Fig 14. QGIS generated map (left), MicaSense map (right) 
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4.2 DEM Models 
4.2.1 Accuracy 
MicaSense generated DEMs were helpful in 
validate the accuracy of the results.  The DEM 
maps were very similar to those generated by 
MicaSense and were deemed accurate enough to 
assist in crop management planning (Fig 15). 
 
4.2.2 Validation of Data 

As seen in Fig 16 below, the model created in 
Agisoft and then further analyzed in QGIS (left) 
looks very similar to the model provided by 
MicaSense (right). This means that the UAS and 
software used (Agisoft, QGIS) to interpret the 
data from this research was proven successful at 
determining elevation. 

 
Fig 15. DEM from an Agisoft generated 

report 

 

Fig 16. QGIS map (left), MicaSense map (right) 

4.3 Estimating Crop Yields 
Another useful application of more advanced surveying within the agriculture industry is to 
estimate crop yield. This was demonstrated within Matlab with the results shown in Fig 17. 
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Fig 17. Estimating crop yields.  Original image (top left) and image processing algorithm 
(bottom) used to count total number of crops in image (top right). 

This process of systematically counting the number of crop within an image required detecting 
a distinct pigment (in this case cabbage green). An algorithm would then find clusters of this 
and circle it to visually depict the crops found by the algorithm (Lum, Summers, Carpenter, 
Rodriguez, & Dunbabin, 2015). 

5.0  DISCUSSION 

5.1 Significance of Results and Agricultural Applications 
This research has further demonstrated the utility of UAS with an onboard multispectral imager 
for assessing vegetation health. The applications of such technology, both within and outside 
agriculture, are extensive. Below are some potential applications and improvements that could 
be implemented to increase agricultural production (Grassi, 2014): 

• Mid-season Crop Health Monitoring: inspect and assess immature crops with NDVI maps. 
• Irrigation Equipment Monitoring: examine the nozzles and sprinklers on irrigation 

equipment to ensure that water is properly being delivered to crops. 
• Invasive Species Identification: use NDVI sensor data and image processing to develop a 

weed map which enables farmers to differentiate between areas of weed infestation and 
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neighboring healthy crop growth; consequently, they can selectively spray pesticides only 
on problem areas, minimizing environmental damage and cutting cost. 

• Variable-Rate Fertility: use variable-rate application (VRA) maps to determine where the 
farmer needs to apply more fertilizer to struggling areas and less fertilizer to healthy areas, 
decreasing fertilizer costs and boosting yields. 

• Cattle Herd Monitoring: tracking the quantity and activity level of animals; this is particularly 
helpful for night-time monitoring as humans cannot see well in the dark. 

• Stand uniformity problems: locate and measure areas of irregular or reduced plant stand 
caused by weather, soil, or planting. 

• Moisture monitoring: detect and measure crop stress resulting from too much or too little 
precipitation or by inadequate draining systems. 

The development of UAS technology in parallel with PA has the potential to change the 
agriculture industry significantly. With the help of UAV technology, farmers will be able to 
operate at higher profit margins and increase the supply of agricultural resources in the 
economy, likely encouraging greater affordability of food and supplies. 

6.0  CONCLUSION 

6.1 Important Report Findings 
This paper has described a new hardware and software framework whereby low-cost UAS can 
be fitted with commercial cameras to generate accurate elevation and NDVI maps of 
agricultural land. Additionally, a comparison between the results generated by commercial and 
free-ware software systems has been presented. The orthomosaics created in Agisoft 
Photoscan Pro were very useful in analyzing the vegetation surveyed at SERF. Agisoft allowed 
all the separate images taken from the UAS to be stitched together through various 
photogrammetry techniques.  

Furthermore, by using QGIS, vegetation health was able to be assessed in NDVI maps. The 
results when compared with DEMs obtained from MicaSense were proven to be accurate and 
reliable. 
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