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Abstract. Corn nitrogen recommendations for individual fields must improve to minimize the 
negative influence that agriculture has on the environment and society. Two adaptive N 
management approaches for making in-season N fertilizer recommendations are remote sensing 
and crop systems modeling. Remote sensing has the advantage of characterizing the spatial 
variability at a high spatial resolution, and crop models are prognostic and can assess expected 
additions and losses that are not yet reflected by the plant (e.g., due to recent management, 
weather, etc.). Remote sensing can be used to estimate crop biophysical parameters such as leaf 
area index or biomass, and can be used to calibrate crop systems models for making more 
accurate N fertilizer recommendations. A challenge in implementing this, however, is that an 
independent model calibration is required for each spatial area to be modeled. This study aims to 
test an autocalibration method at the sub-field scale for use in calibration of the EPIC 
(Environmental Policy Integrated Climate) model so it can be used more reliably for precision 
agriculture applications. EPIC is capable of simulating crop growth, nutrient transport and 
demand, and water movement on a daily time step. Following an initial calibration, an independent 
calibration is performed for each area within the study area using spatially precise outputs derived 
from remote sensing data (i.e., leaf area index and biomass). A field experiment was conducted 
in 2017 with four nitrogen rates and two timings of N fertilizer (i.e., preplant and V5 leaf stage). 
Tissue N and aerial imagery were collected at several days during the early growth stages to use 
as a basis for implementing and testing the autocalibration approach. The Monte Carlo algorithm 
was used to generate samples for the autocalibration step, and the Nash-Sutcliff efficiency was 



used as an objective function to analyze and interpret the results. The techniques utilized in this 
study serve as a framework for being able to use crop systems models for making more accurate 
N fertilizer recommendations.  
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Introduction: 
Due to soil spatial variability and the unpredictable role that weather plays on soil and crop 
nitrogen dynamics, uncertainty in predicting optimal fertilizer nitrogen (N) rates for corn is high, 
and consequently, final recommendations for individual fields are less accurate than desired 
(Morris et al., 2018). Much attention is given to balancing the economic, environmental, and social 
pressures that influence N rate recommendations (Gourevitch et al., 2018). However, little is 
understood about how accurate N recommendations can be determined to properly quantify these 
pressures in the context of optimum N fertilizer rates, especially while accounting for spatial 
variability (both within and across fields). For producers that apply at least part of the crop N 
requirement during the season, the opportunity exists to apply the N fertilizer at a variable rate 
across space. The economic optimum N rate in corn typically varies spatially (Mamo et al., 2003; 
Scharf et al., 2006), so better matching fertilizer rate with crop requirement reduces the likelihood 
of N loss to the environment (Mulla, 2013). There are two principle techniques available for 
implementing an in-season adaptive N management approach – remote sensing and crop 
systems modeling. Each of these techniques has advantages and disadvantages when used as 
a tool for developing in-season N recommendations, but overall, both techniques have struggled 
to gain traction for use in a commercial setting because they each have practical limitations that 
have not yet been overcome (Thompson et al., 2015). 
An advantage of spectral remote sensing for N rate predictions is that data covering a whole field 
can be collected quickly, so it is well-suited for quantifying the spatial variability due to N stress 
across a field (Franzen et al., 2016). However, because remote sensing is an indirect diagnostic 
technique for estimating crop biophysical phenomena, measurements inherently experience a 
delayed response compared to true biophysical indicators of nitrogen stress (e.g., tissue nitrogen 
content). For remote sensing data to be effectively utilized for making recommendations, 
practitioners must know the spectral thresholds for that specific crop so nitrogen fertilizer rates 
are adjusted appropriately. This is particularly challenging because data are typically normalized 
(e.g., via the nitrogen sufficiency index) and are expressed in relative units to account for external 
variables (e.g., growth stage, hybrid, radiometric inconsistencies, etc.), and can oftentimes seem 
arbitrary.  
Optimum fertilizer N rates are difficult to determine as they depend on crop N requirement, soil-
derived N supply due to net mineralization and immobilization, and losses of N via leaching, 
denitrification, and volatilization. Crop systems models can be used to simulate these N cycle 
transformations and processes, and can be used as a management tool to determine in-season 
crop N status so N fertilizer rates match crop N demand. Crop systems models also have the 
advantage of being prognostic, so they can assess expected additions and losses that are not yet 
reflected by the plant (e.g., due to recent management, weather, etc.). However, uncertainties 
arise due to limitations in the accuracy of available input data, especially soils information. For 
crop model outputs to be reliable, the models must be calibrated using observations or empirical 
estimation of soil and plant parameters throughout the season. Calibration of models is a crucial 
step for improving model reliability and gaining accurate insights, but it is oftentimes challenging 
to collect sufficient calibration data in a production environment, especially while accounting for 
spatial variability that exists across a field. A major limitation of using crop systems models for 
making N fertilizer recommendations is that most models assume a homogeneous simulation 
area. Furthermore, it is typically the case that input data and model parameters vary in scale, and 
therefore cannot effectively account for spatial variability at the required scale without additional 
calibration. 

Scale of Data Inputs 
When input data from different scales are utilized together in a crop systems model, data 
aggregation typically occurs, which can lead to substantial uncertainty if calibration at the smallest 
scale is not performed (Porwollik et al., 2017). It is also common to apply a model to a larger 
extent than it is calibrated for by implementing it many times across an area using unique inputs 
and parameters representing each spatially homogenous area. The major barrier to this method, 
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however, is the availability of accurate input data and model parameters at the desired spatial 
resolution. It is often necessary to use soils data from the Soil Survey Geographic Database 
(SSURGO) for precision agriculture applications, even though data were collected and are 
intended to be used at a minimum scale of 1:24,000 (much coarser scale than most precision 
agriculture applications require). Ideally, input data used in a model for characterizing an output 
should be at a similar or finer scale than the variability of that output. For example, because it is 
common that the economic optimum N rate in corn varies spatially within a field (Mamo et al., 
2003; Scharf et al., 2006), it may be of interest to use a model to characterize the economic 
optimum N rate based on crop N uptake. Input data should be of fine enough scale to capture the 
spatial variability of crop N uptake so uncertainty is minimized. Indeed, the use of site-specific 
calibration parameters (instead of default values) minimizes errors across different soil, water, 
and nutrient conditions (Sinnathamby et al., 2017). However, a barrier to implementing an 
additional, site-specific calibration method at a scale similar to the spatial variability of the 
predicted parameter is the tedious effort required to perform the calibration itself. Autocalibration 
methods have been used to address this challenge, but they have only been tested at the farm 
scale and larger (Kamali et al., 2018; Sinnathamby et al., 2017; Xiong et al., 2014).  
A major inherent limitation of the EPIC (Environmental Policy Integrated Climate) model for 
variable rate N applications is that maximum leaf area index (LAI) estimations are not inherently 
affected by N fertilizer rate (Salo et al., 2016). This is an issue if EPIC is used for precision N 
management because it does not consider how crop N uptake affects LAI. By calibrating EPIC 
based on estimated in-season LAI and biomass from remote sensing, this limitation can be 
overcome. The objective of this work is to implement and test an autocalibration method at the 
sub-field scale for use in calibrating the EPIC crop systems model based on in-season estimates 
of LAI and biomass for precision agriculture applications, specifically for predicting crop N 
availability. 

Materials and Methods: 

Site Description 
A field study was conducted at the Agricultural Ecology Research Farm at the Southern Research 
and Outreach Center near Waseca, MN in 2017 to evaluate the ability to autocalibrate the EPIC 
model during the growing season based on site-specific characteristics and N fertilizer 
management. Measured data were collected from a 0.67 ha area of the field having a subsurface 
tile drainage system at a depth of 1.2 m and drain spacing of 24 m. There were two soil types 
within the study area: the Webster clay loam (fine-loamy, mixed, superactive, mesic Typic 
Endoaquolls) and the Nicollet clay loam (fine-loamy, mixed, superactive, mesic Aquic Hapludolls). 
The Webster series is poorly drained and is located on the broad, more level areas of the 
landscape, whereas the Nicollet series is somewhat poorly drained and is located on more convex 
landscape areas. Both the Nicollet and Webster soil series have a group C hydrologic 
classification. The boundary delineating the two soil types is roughly similar to the boundary 
between the two replications (one replication had the Webster series as the predominant soil type, 
and the other had the Nicollet; Figure 1). 
The study area was comprised of 16 individual treatment plots (30 m x 14 m). Four N fertilizer 
rates (0, 67, 135, and 202 kg N ha-1) were applied at either preplant or the V5 growth stage for a 
total of 6 treatments (Table 1). Fertilizer N was broadcast applied as urea for both preplant and 
sidedress application timings. Preplant fertilizer was applied to all treatment plots and consisted 
of 50 kg ha-1 P2O5 (as triple superphosphate), 67 kg ha-1 K2O (as potash), and 10 kg ha-1 SO4

-2 
(as gypsum). Refer to Table 2 for the dates of other field operations. 
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Figure 1: Map of the treatment plots, soil types, and treatment information. 

 
Table 1: Nitrogen (N) fertilizer treatment rates (kg N ha-1). 

Treatment Preplant 
N (kg ha-1) 

Sidedress 
N Total N 

1 0 0 0 
2 67 0 67 
3 135 0 135 
4 202 0 202 
5 67 67 135 
6 135 67 202 

 

 

Table 2: Dates of 2017 field operations. 

Date Field operation 
May 8 Preplant fertilizer 
May 10 Preplant nitrogen 
May 11 Tillage (field cultivator) 
May 12 Planting 
Jun 19 Sidedress nitrogen 
Nov 8 Harvest 

EPIC Model Description 
The EPIC (Environmental Policy Integrated Climate) model is a site-based, agroecosystem model 
capable of simulating crop growth, nutrient transport and demand, and water movement 
(Izaurralde et al., 2006; Williams, 1990), and was used in this study. EPIC was originally 
developed to assess the effects of soil erosion on overall productivity (Williams et al., 1989), but 
more recent versions have been developed to incorporate hydrologic and nutrient cycling 
components and have been used to estimate nutrient losses from fertilizer applications (Chung 
et al., 2001; Phillips et al., 1993). It simulates soil and crop-related processes for a specific site, 
and operates on a daily time step. It is especially attractive to be used as a decision support tool 
for in-season N management because it has a strong hydrologic component and considers many 
of the major soil N dynamics and processes that affect crop N availability and growth (Salo et al., 
2016). Furthermore, it supports a rather complex combination of management operations (e.g., 
tillage, irrigation, fertilization, etc.) and rotations, making it a more robust model overall (Cassman 
et al., 2002). EPIC was used in this study to estimate crop N availability for developing more 
accurate sidedress N fertilizer recommendations. 
The EPIC model simulates daily gains in crop biomass based on the concept of radiation-use 
efficiency whereby a proportion of photosynthetically active radiation is assumed to be intercepted 
by the plant canopy and is converted into plant biomass (Stockle et al., 1992). As the growing 
season progresses, daily crop growth and yield potential are affected by ambient vapor pressure, 
CO2 concentration, and the most severe of daily calculated indices for water, temperature, N, 
phosphorus, or aeration stress. A fraction of daily biomass accumulation is partitioned to roots, 
whose growth is affected by temperature, soil strength, and aluminum content. Daily weather can 
be input or estimated based on long-term monthly averages; whether input or estimated, required 
parameters include precipitation, air temperature, solar radiation, wind, and relative humidity. 
Dozens of physical and chemical soil properties for each soil layer drive the nutrient transport 
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processes in EPIC. The hydrologic processes supported by EPIC include surface runoff, 
infiltration, evapotranspiration, tile drainage, percolation, lateral subsurface flow, soil water 
content dynamics, and water table dynamics. Soil temperature in each soil layer is computed daily 
according to equations described by Potter and Williams (1994), and is an important parameter 
in the nutrient cycling and hydrology subroutines. Soil organic C is simulated by subroutines that 
convert organic materials into one of three compartments, each having a different turnover time: 
microbial biomass (days or weeks), slow humus (few years), and passive humus (hundreds of 
years). Tillage subroutines simulate the mixing of nutrients and crop residues within the plow 
layer, and also simulate changes in bulk density, crop residues, surface roughness, and ridge 
height (Izaurralde et al., 2006). 
In this study, i_EPIC/i_EPIC_console were used to interface and manipulate EPIC inputs and 
outputs located in a PostgreSQL database and raw text-based EPIC files (EPIC version 1102 was 
used). i_EPIC is a Windows based program for interacting with EPIC. Its two primary purposes 
are: i) to control and automate large numbers of EPIC runs, generating input, repeatedly invoking 
EPIC, and cataloging the results; and ii) to provide easier-to-use interfaces for building EPIC input 
and tabulating EPIC output (Gassman et al., 2003). 

Model Inputs 
Soil samples were collected at the beginning of the 2016 growing season for the surface 15 cm 
and included analyses for pH, organic matter content, and P, K, and NO3

- concentration. Soil 
properties that were not directly sampled were obtained from SSURGO available from the Natural 
Resource Conservation Service (NRCS). These inputs include layer depth, bulk density, wilting 
point, field capacity, percentage sand, percentage silt, organic carbon content, calcium carbonate 
content, and cation exchange capacity. Weighted averages for each soil property were calculated 
for each layer across all components of the soil map unit. The dominant component was used to 
determine the layer thicknesses for aggregating across other components. For this study, daily 
precipitation, maximum and minimum air temperature, relative humidity, solar radiation, and wind 
speed were measured within 300 m of the study area. The Penman-Monteith method (Monteith, 
1965) was used to estimate the potential evapotranspiration. Dates of field operations that took 
place throughout the growing season were input into EPIC and are shown in Table 2.  

Field Sampling 
Crop nitrogen uptake was measured at the V5, V10, and R2 growth stages, and grain yield was 
measured at physiological maturity. The V5 sampling occurred on 15 June, which was four days 
prior to the sidedress N application (Table 2). EPIC model simulations were performed 
independently for each treatment with and without in-season calibration via integration of nitrogen 
uptake predictions from remote sensing data. Aerial imagery was collected to be used as a site-
specific calibration input. Nitrogen uptake observations and predictions were used to calculate 
the root mean squared error, which was subsequently used to evaluate the performance of the 
integrated approach. 

Remote sensing 
Hyperspectral aerial images were captured with a gimbal-stabilized Pika II line-scanning 
hyperspectral camera (Resonon, Inc.; Bozeman, MT) mounted on an unmanned hexacopter (DJI 
Matrice 600 Pro, Nanshan District, Shenzhen, China). DJI Ground Station Pro (iPad app) was 
used to create and execute flight plans for controlling altitude, heading, and ground speed. 
Ground sampling distance for images at various dates ranged from 2.5 cm to 6.0 cm. Gray 
reference panels with known reflective properties were placed in the study area prior to image 
capture; panels were 60 x 60 cm and the surface was 50% BaSO4/50% gray paint by weight. 
Radiometric correction was performed via SpectrononPro software (Resonon, Inc.; Bozeman, 
MT) using a calibration file provided by Resonon for the specific camera and lens that were used. 
Gray reference panels that were placed in the study area prior to image capture were used to 
convert spectral radiance to surface reflectance across all images. Methods describing post-
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processing steps, spectral analysis, and LAI and biomass sampling is described in Nigon et al. 
(2017). The Improved Modified Chlorophyll Absorption Ratio Index (MCARI2) was used to predict 
LAI and biomass during the early growth corn growth stages. MCARI2 uses green, red, and near-
infrared bands to incorporate a soil adjustment factor while preserving sensitivity to LAI and 
resistance to chlorophyll influence. It has been shown to be a good predictor of green LAI 
(Haboudane et al., 2004). 

Sensitivity Analysis and Calibration 
A preliminary sensitivity analysis was performed to identify the inputs and model parameters that 
were most sensitive to outputs related to hydrology, N cycling, and crop growth (i.e., LAI, grain 
yield, and biomass). Initial default values were assigned to model inputs and parameters that 
were most sensitive to outputs based on results of the preliminary sensitivity analysis. Default 
values were chosen based on how they influenced the outputs. Values were chosen so that EPIC 
was able to model outputs related to the water balance, nitrogen balance, and overall crop growth 
that seemed to be reasonable for the site.  
Because EPIC is process-based, the initial model calibration was performed in an iterative fashion 
based on comparisons between measured and simulated values for a subset of EPIC inputs and 
parameters that have an influence on hydrology, N cycling, and crop growth. During this initial 
calibration, only the EPIC outputs that lack spatially precise measured values were calibrated. 
These included evapotranspiration, tile drain flow, and tile drain nitrate loading.  
Following the initial calibration steps, EPIC outputs that have spatially precise measured values 
were calibrated for each individual homogeneous area of the field. These included LAI, biomass, 
and total N uptake estimated from in-season remote sensing, as well as grain yield at the end of 
the season. In this context, homogeneous refers to an area of the field that either has input data 
aggregated to a minimum spatial scale, or that has input data collected at a minimum spatial 
scale. The minimum spatial scale used in this study was the size of the treatment plots (i.e., 30 m 
x 14 m). Because it is tedious to calibrate the model for several measured inputs across many 
spatially homogenous areas of a field, it is desirable to implement an autocalibration technique.  
In this study, the SPOTPY Python package (Houska et al., 2015) is being investigated as a tool 
to perform the autocalibration. SPOTPY is a pure Python implementation that enables the use of 
computational optimization techniques for calibration, uncertainty, and sensitivity analysis 
techniques of any environmental model that is able to be run within the SPOTPY class and whose 
inputs and outputs can be manipulated by SPOTPY. Upon linking SPOTPY to the input and output 
tables that EPIC utilizes, SPOTPY utilizes the following steps to implement a generalized 
autocalibration procedure: i) choose an algorithm to fit model outputs to observed data (the Monte 
Carlo algorithm was used in this study), ii) run the model an adequate number of times so that 
there are a sufficient number of iterations to generate reliable results, and iii) choose an objective 
function to analyze and interpret the results (Nash-Sutcliff efficiency; NSE) was used in this study. 
Note that implementation of SPOTPY is still a work in progress, so results are not ready to be 
included in these proceedings.  

Results and Discussion 
Tissue N concentration decreased as the season progressed, indicating a dilution in N 
concentration due to a rapid increase in vegetative growth (Figure 2). At the V5 stage (four days 
prior to sidedress N application), the 0 kg N ha-1 treatment already had a lower tissue N 
concentration than any of the other treatments. All fertilizer N was applied to treatments by the 
V10 stage, and by this point, both the 0 and 67 kg N ha-1 treatments had lower tissue N than the 
higher rates. There was more variability in tissue N at the R2 growth stage, but there was not a 
statistical difference among treatments that had at least 135 kg N ha-1 applied. The study site had 
two different soil types (Figure 1), and this likely contributed to the variability observed at any of 
the growth stages. 
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Figure 2: Tissue nitrogen concentration at the V5, V10, and R2 growth stages. Labels on the x-axis refer to treatment number and 
also denote preplant and sidedress N fertilizer rates (labeled “pre” and “sd”, respectively). Error bars represent 95% confidence 
intervals. 

An exponential curve best modeled the relationships between MCARI2 and each of the measured 
biophysical parameters (Figure 3). MCARI2 had a better relationship with above-ground biomass 
(R2 = 0.57) than with LAI (R2 = 0.46). Nigon et al. (2017) used the exponential models described 
in Figure 3 to predict each of the biophysical parameters, and they reported root mean square 
error (RMSE) values of 4.70 g and 0.31 for biomass and LAI, respectively. Most of the variability 
occurs during the later growth stages, especially for LAI. Although the ability of the MCARI2 
spectral index to predict biomass and LAI is not perfect, it does seem to be a viable option to be 
used as a calibration parameter for the EPIC model. It is important to consider the variability of 
such estimations when interpreting the results of the model, however. Further analysis is required 
to determine if other band combinations and/or classification techniques can be implemented to 
reduce the error in biomass and LAI predictions. 
Table 3: EPIC inputs and parameters most sensitive to outputs related to hydrology, nitrogen cycling, and crop growth. 

EPIC Input 
Code Description Hydrology Nitrogen 

Cycling 
Crop 

Growth 
Default 
Value 

Crop Development     
BN1 Nitrogen uptake at emergence x  x 0.044 
BN2 Nitrogen uptake mid-season x  x 0.025 
BN3 Nitrogen uptake at maturity  x x 0.013 
CAF Critical aeration factor x x x 0.85 
DLAI Growing season leaf decline  x x 0.85 
DLAP1 Leaf development first point x x x 15.05 
DLAP2 Leaf development second point x x x 50.95 
DMLA Maximum LAI   x 6 
TBSC Minimum temperature x  x 10 
TOPC Optimal temperature x  x 25 
WA Biomass energy ratio  x x 45 

Parameters     
PARM(2) Root growth:soil strength x  x 1.2 
PARM(17) Vertical crack flow coefficient  x   0.25 
PARM(30) Denitrification trigger  x  1 
PARM(35) Water stress weighting coefficient   x 0.5 
PARM(42) NRCS curve number index coefficient x x  0.5 
PARM(53) Microbial activity coefficient  x x 0.9 
PARM(73) NRCS curve number upper limit x x  1.5 
PARM(74) Penman-Monteith coefficient x x  1 
PARM(95) Soil temperature damping depth   x x 1 

Soils     
BD Bulk density  x  1.04 
CNDS Nitrate concentration  x  8.3 
FC Field capacity x x  0.32 
WOC Organic carbon  x  2.75 
WTMN Minimum water table depth x x x 1.2 
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Figure 3: Relationship between MCARI2 (Modified Chlorophyll Absorption Ratio Index) and biomass (left) and MCARI2 and leaf area 
index (LAI; right) during early growth stages of corn development (data adapted from Nigon et al., 2017). 

At this point, model calibration results are not available due to difficulties in properly setting initial 
EPIC inputs and parameters in order to obtain realistic water and N balances. Although we have 
encountered challenges, we are optimistic that we will get past this obstacle soon and have 
autocalibration results to share at the time of the conference. 

Summary 
Results from this study illustrate that simple relationships between spectral remote sensing 
information and early season crop biophysical parameters can be used to estimate the spatial 
variability of those parameters across a field. This information can subsequently be used to 
calibrate crop systems models that attempt to make in-season N fertilizer recommendations. 
There is still much work to be done to properly evaluate the autocalibration approach described 
herein, but we are optimistic that the techniques utilized in this study will serve as a framework 
for using crop systems models for improving the accuracy of N fertilizer recommendations.  
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