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Abstract: Compact hyperspectral sensors compatible with UAV platforms are becoming more readily 
available. These sensors provide reflectance in narrow spectral bands while covering a wide range of the 
electromagnetic spectrum. However, because of the narrow spectral bands and wide spectral range, 
hyperspectral data analysis can benefit greatly from data mining and machine learning techniques to 
leverage its power. In this study, rainfed corn was grown during the 2017 growing season using four nitrogen 
treatments (between 0 and 200 kg N/ha using 67 kg/ha increment steps) where 200 kg/ha represented the 
economically optimum nitrogen rate (EONR). This design generated four ordinal classes of N deficiency 
(dN) that were confirmed using chlorophyll readings (SPAD), leaf nitrogen content, and soil nitrate all 
collected at V5 corn growth stage, on the same day the hyperspectral data was collected. Hyperspectral 
images were collected using a line scanner sensor on board a hexacopter UAV platform. Following 
radiometric correction, image segmentation, spectral extraction and preprocessing, eight machine learning 
algorithms were compared for their accuracy in determining the four classes of nitrogen deficiency levels 
based on the DEONR (dN =dEONR). These algorithms are the logistic regression (LR), support vector 
machine (SVM), random forest (RF), gradient boosting (GB), naïve Bayes (NB), decision tree (DT) and 
Multi-Layer Perceptron (MLP). A confusion matrix based on a 30% test set (unseen by the models) was 
used to determine the performance of these classifiers and to illustrate the type and magnitude of errors 
for each classification method. Narrow-bands and simulated broad-band vegetation indices (VIs) were also 
derived from the hyperspectral data and compared to machine learning algorithms for the prediction of dN. 
Our findings confirm the challenge of using VIs to assess early season (V5) corn nitrogen status. VIs 
correctly estimated N stress on only 50% of plant samples, and caused nearly 30% of plants to be under-
fertilized. On the other hand, hyperspectral machine learning significantly improved the assessment of corn 
nitrogen stress at V5, and achieved more than 90% classification accuracy. Particularly, SVM, LR, MLP 
and GB showed promising results. These findings illustrate the huge potential for UAV-compatible 
hyperspectral sensors to improve in-season corn nitrogen management for timely variable rate sidedress 
application. 
 

The authors are solely responsible for the content of this paper, which is not a refereed publication. This paper should be cited 
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assessing corn nitrogen status in an agricultural field in Minnesota. In Proceedings of the 14th International Conference on 
Precision Agriculture (unpaginated, online). Monticello, IL: International Society of Precision Agriculture.  

 
Introduction 
Nitrogen management for Midwestern row crops continues to pose a challenge for society because of 
societal, environmental, agronomic and economic ramifications of mismanagement (Keeler et al., 2016). 
Crops under-fertilized with nitrogen (N) produce lower yields and are undesirable to growers, while fields 
that are over-fertilized can cause offsite pollution of surface and ground water. Current best management 
practices for nitrogen management recommend an in-season sidedress application using crop sensing to 
improve N efficiency, a task usually undertaken around V5-V6 corn growth stage because of farm logistics. 
In-season canopy sensing has been traditionally conducted using broadband vegetation indices (VIs) such 
as the ubiquitous Normalized Difference Vegetative Index (NDVI). However, these broadband VIs are only 
weakly correlated to corn N status at early growth stages. The weak relationship between VIs and corn N 
status at early corn growth stages has been attributed to the crop low early demand for nitrogen 
(Abendroth et al., 2011), and poses a hurdle for accurate sidedress rate computation. Recent advances in 
sensor development and UAVs offers a unique opportunity for the timely capture of crop spectral 
signatures in the entire visible and infrared light spectrum, thus potentially detecting early nitrogen 
deficiencies missed by using broadband VIs. However, because of the high spectral and spatial dimensions, 
hyperspectral data require data mining techniques to extract key features that provide information about 
N stress. The objective of this study is to compare the accuracy of corn N status detection based on 
broadband VIs to detection based on machine learning (ML) classification algorithms using UAV-based 
hyperspectral sensing.  
 

Material and Methods 
This study was conducted in the 2017 growing season on a portion of a 40-acre field owned by the 
University of Minnesota that was used for a larger water quality study. The field is characterized by a clay-
loam soil texture (major soil types at the site include Webster silty clay loam (fine-loamy, mixed, 
superactive, mesic Typic Endoaquolls) and Nicollet clay loam (fine-loamy, mixed, superactive, mesic Aquic 
Hapludolls)) and relatively flat topography. Soil samples were taken before planting and at sidedress time 
to confirm soil nitrogen level and crop stress. Corn was planted on May 12 and V5 growth stage was 
attained on June 15. Four rates of nitrogen (0, 67, 134 and 200 kg/ha) were applied in a two-block 
experimental design. Each plot was 30 m x 14 m in size and crop row spacing was 0.76 m, so there were 
18 rows per plot.  The highest rate of 200 kg/ha represents the University of Minnesota’s economically 
optimum nitrogen rate (EONR) for corn following corn. Nitrogen rates were applied one day before 
planting using a toolbar spreader. These plots were used as part of a larger study to develop nitrogen 
sidedress rates for the entire field. When corn reached growth stage V5, SPAD measurement and tissue 
samples were collected from each plot and used to classify the plots into four nitrogen deficit (dN) classes 
that would require different rates of sidedress (Table 1). With this approach, plots that received zero 
preplant nitrogen are the most deficient and are labeled Class 1, followed by Class 2 which contains plants 
from plots that received 67 kg/ha preplant, and Class 3 with plants that received 134 kg/ha. The fourth 
class is represented by plots receiving 200 kg/ha N. These treatments resulted in four different nitrogen 
levels in corn that were confirmed with SPAD measurements, soil N tests and leaf tissue N analysis all 
measured at V5 corn growth stage (Table1). 
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Table 1: Description of the four classes of corn nitrogen stress based on SPAD, Soil N and tissue N 

Ordinal classes N treatment dN (200- N trt) SPAD (V5) Tissue (V5) Soil N (V5) 
Class 1 (very deficient) 0 kg/ha 200 34 2.6 % N 2.94 ppm N 
Class 2 67 134 39.1 3 4.89 
Class 3 134 67 46.1 3.5 49.1 
Class 4 (EONR) 200 0 49.3 3.9 15.3 

 
Image acquisition: Hyperspectral aerial images (2.1 nm spectral resolution ranging from 395 nm to 885 
nm) were captured with a gimbal-stabilized Pika II line-scanning hyperspectral camera (Resonon, Inc.; 
Bozeman, MT) mounted on an unmanned hexacopter (DJI Matrice 600 Pro, Nanshan District, Shenzhen, 
China). DJI Ground Station Pro (iPad app) was used to create and execute flight plans for controlling 
altitude, heading, and ground speed.  The camera framerate was set to 99 frames per second, and the 
hexacopter passed over the target area at a speed of 2.5 mps and an altitude of 30 m, resulting in an 
image pixel size of approximately 2.5 cm. Gray reference panels with known reflective properties were 
placed in the study area prior to image capture; panels were 60 x 60 cm and the surface was 50% 
BaSO4/50% grey paint by weight. 
Image processing: Radiometric correction was performed via SpectrononPro software (Resonon, Inc.; 
Bozeman, MT) using a calibration file provided by Resonon for the specific camera and lens that were 
used. Grey reference panels that were placed in the study area prior to image capture were used to 
convert spectral radiance to surface reflectance across all images.  Soil background was removed using a 
supervised classification leaving only pure vegetation pixels. Only spectral data from the pure vegetation 
pixels in each plot were extracted and converted to tabular data for analysis. 
Vegetation indices: The spectral data were collected at V5 corn grown stage. The conventional VIs (broad-
band) were computed from the hyperspectral data by averaging over the corresponding VI spectral 
reflectance (30 nm bandwidth). These indices included the NDVI, Green Relative Vegetative Index (GRVI), 
Normalized Difference Red Edge (NDRE) and Green Normalized Difference Vegetative Index (GNDVI). 
Additionally, a narrow-band version of these VIs was also computed using the central hyperspectral 
narrow-bands of the corresponding VI. These narrow-bands VIs are termed NDVIH, GRVIH, NDREH and 
GNDVIH. Each of these indices was regressed on dN (dN= 200- Applied N) to establish the relationship 
between each VI and N status and thus was used to predict the N stress class. We used 70% of measured 
data to develop the regression equations and we proceeded toward estimating the stress level (class) with 
the remaining 30% of the data to assess the fit of each VI for corn N status quantification. When the 
prescribed N stress level (dN) is overestimated, we labeled it “over-fertilized” and when it is under-
estimated we labeled it “under-fertilized”.  
Machine learning algorithms: Eight ML classification algorithms were compared for their performance in 
classifying corn plants into the four classes of N deficiency. These algorithms are decision tree (DT), 
random forest (RF), gradient boosting trees (GB), K nearest neighbor (KNN), naïve Bayes (NB), support 
vector machine (SVM), and multi-layer perceptron (MLP). Mueller and Guido (2016) and Brieman et al. 
(1984) provide more details about these algorithms and parameter selection for each. We fitted these 
algorithms on the high dimension hyperspectral data (240 bands) both with and without feature 
extraction. Feature extraction was evaluated using RF to rank the 15 most important bands. RF can guide 
in the identification of important bands by identifying those used as nodes (or split). This method can 
therefore be used to identify bands for designing multispectral sensors. In a second feature extraction 
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technique we examined the spectral signature of all the treatments and selected 8 bands that best 
separated the treatments. We also evaluated principal component analysis (PCA) as a dimension 
reduction technique. For validation, data were split into 70% training set and 30% test set. We opted for 
this technique of validation in lieu of the popular cross-validation because we wanted to evaluate the 
confusion matrix for the mis-labeled pixels to assess the over- and under-fertilization potential. Using the 
cross-validation method will produce a confusion matrix for each run instead of one confusion matrix for 
each classification technique. Overfitting, a serious issue in ML, was evaluated by comparing the accuracy 
on the test set to the training set. A perfect classification of the training set is highly indicative of 
overfitting. Scikit-learn (Pedregosa et al. (2011)) and python were used for ML implementation following 
the guidance of Mueller and Guido (2016) for parameter optimization. 
 
Results and Discussion 
Fig. 1 shows a λ-λ plot illustrating the strength of the relationship between pairs of the 240 bands collected 
by the Resonon hyperspectral line scanner. The plot illustrates the strong relationship between bands in 
the NIR range which could potentially be used to reduce bands from the data. However, this 
multicollinearity does not impact the prediction power of most ML algorithms (De Veau and Ungar, 1994).  
Also noticeable in Fig. 1 is the weak relationship between the red (660 - 698 nm) and NIR region of the 
spectrum, and between the violet (395 - 400 nm) and the rest of the spectrum.  Weak relationships 
between bands are desirable because the information in each band is complementary and leads to better 
diagnosis of N stress. 
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Fig. 1: λ-λ correlation plot between the different bands with darker blue indicating stronger correlation.  
The spectral signature for each of the four classes of nitrogen stress is presented in Fig. 2. According to 
the figure, the visible light spectrum (420-700 nm) is only capable of separating the very deficient plants 
from the remaining three classes. On the other hand, the NIR region can separate all four classes of stress. 
Interesting also is the violet light (395-400 nm) where signatures of the four classes can be distinguished. 
Results of the regression of dN against the different VIs was best described with a quadratic model and 
the R squared varied between 0.3 (NDREH) and 0.42 (simulated broadband NDVI). The prediction power 
of these different VIs is summarized in Table 2. Overall, the different VIs were only capable of predicting 
50% of the samples correctly. About 28% of the samples were under-fertilized and 22% were over-
fertilized. No difference was observed between the narrow-band VIs and the broad-band VIs, and the 
NDRE performed the worst among the different VIs (Table 2). 
 

 
Fig.2: Spectral signature of the four classes of nitrogen stress in corn at V5 using hyperspectral sensing. 
Class 1 (red) is plotted with the 95% confidence interval for variance illustration.  
 
Prediction power of the different ML classifications based on 240 bands: 
• Decision tree (DT): This classification algorithm has a tendency to overfit the data if restrictions are 

not imposed. We restricted both the depth of the tree (pruning) and the minimum number of samples 
for node splitting to overcome the overfitting issue. Choosing between Gini index and entropy did not 
impact the outcome of the classification. Overall, the DT algorithm was capable of correctly classifying 
74% of the test set (79% on the training set) with 16% of the samples under-fertilized and 10% over-
fertilized (Table 2). 
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• Random Forest (RF): As was the case for the DT algorithm, we used pre-pruning and imposed 
threshold for nodes to avoid overfitting. Additionally, we specified 100 iterations (trees). The trees 
were generated while allowing bootstrapping. RF outperformed DT as expected and achieved an 
overall classification accuracy of 78%. 

 
• K Nearest Neighbor (KNN): The best performance of this algorithm was achieved using K=15 

neighbors, Minkowski distance metric and uniform weights. Larger K values slows the processing, but 
provides better performance. KNN achieved an overall accuracy of 79%. 
 

• Bayes naïve (BN): Using the Gaussian implementation of BN resulted in mediocre performance with 
an accuracy of 57%. This was expected as the BN assumes independence between futures (Zhang, 
2004; Pedregosa et al. 2011) which is not the case with hyperspectral data. 

 
• Logistic Regression (LR): LR achieved a 90% classification accuracy. The best result was found when 

we set the regularization strength to a value of 0.02, giving more weight to the correctly classified 
samples following the procedure outlined in Pedregosa et al. (2011).  

 
• Support Vector Machine (SVM): data were scaled (0-1) first before SVM processing, as this algorithm 

is known to be sensitive to large values. SVM did extremely well classifying the unseen test set with 
an overall accuracy of 91%.  The best performance was achieved using a linear kernel and a penalty 
parameter value of 1 (Chang and Lin, 2001). 

 
• Multi-Layer Perceptron (MLP): Similar to SVM, we used scaled data in the MLP classification. The best 

result was achieved using a learning rate of 0.01. Increasing the number of iterations for the MLP did 
not impact performance. Overall, MLP showed the best performance with a classification accuracy of 
93%. 

 
• Gradient Boosting (GB): GB is similar to RF but the trees are generated using mutually exclusive 

features. As was the case for FR and DT, restrictions were imposed on this ML algorithm to avoid 
overfitting, and they included pruning, number of features per tree, learning rate and number of 
samples per split. GB achieved an overall classification accuracy of 89% (Table 2) 
 

Feature extraction: 
We examined various univariate feature selection techniques including χ2 test, strength of correlation 
between the different bands and the response (dN), and the K-best features based on variance 
(Pedregosa et al. 2011). However, the classification accuracy of these techniques was very poor (based on 
15-20 features/bands). On the other hand, when we used RF to rank the most important features (based 
on nodes), better performance was achieved (Table 2). With the top 15 most important bands (873, 397, 
768, 762, 813, 760, 688, 682, 645, 432, 612, 592, 822, 797, and 828 nm) based on RF classification, both 
MLP and GB achieved 81% classification accuracy. Similarly, using the spectral signature of the four classes 
to guide the selection of 8 bands (397, 559, 684, 746, 756, 768, 795, and 850 nm), we achieved 75-76% 
classification accuracy using MLP and GB. We also examined principal component analysis (PCA) as a 
dimension reduction method. However, we achieved lower classification accuracy with both 3 PC’s and 6 
PC’s (Table 2)  
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Table 2: Three metrics for comparing the different methods of accessing corn N stress. 
Methods Algorithm Accuracy Under-

fertilized 
Over-

fertilized 

Br
oa

d-
ba

nd
 V

Is
 NDVI 0.49 0.31 0.20 

GNDVI 0.50 0.30 0.20 
GRVI 0.51 0.26 0.23 
NDRE 0.46 0.30 0.24 

N
ar

ro
w

-
ba

nd
 V

Is
 NDVIH 0.49 0.30 0.21 

GNDVIH 0.51 0.28 0.21 
GRVIH 0.51 0.27 0.22 
NDREH 0.45 0.31 0.24 

 
M

L o
n 

24
0 

ba
nd

s 

DT 0.74 0.16 0.10 
RF 0.78 0.18 0.03 

KNN 0.79 0.19 0.03 
BN 0.57 0.33 0.10 
LR 0.90 0.07 0.03 

SVM 0.91 0.05 0.04 
MLP 0.93 0.04 0.03 
GB 0.89 0.07 0.04 

M
L w

ith
 1

5 
RF

 se
le

ct
ed

 
ba

nd
s  

RF 0.77 0.17 0.05 
LR 0.78 0.16 0.05 

MLP 0.81 0.12 0.07 
BG 0.81 0.11 0.08 

SVM 0.78 0.14 0.08 

M
L o

n 
8 

sp
ec

tr
al

 
sig

na
tu

re
- g

ui
de

d  
ba

nd
s 

GB 0.76 0.16 0.08 
LR 0.72 0.20 0.08 

MLP 0.75 0.18 0.07 
SVM 0.73 0.19 0.08 

ML with PCA MLP on 3PCs 0.69 0.23 0.08 
MLP on 6PCs 0.74 0.17 0.09 

 
Conclusions 

This research confirmed the challenge of using VIs (both broad-bands and narrow-bands based) to assess 
corn nitrogen stress in early stages of corn development. VIs correctly estimated N stress on only 50% of 
plant samples, and caused nearly 30% of plants to be under-fertilized. On the other hand, hyperspectral 
sensing combined with machine learning significantly improved the assessment of corn nitrogen stress at 
V5, and achieved more than 90% classification accuracy when the entire spectrum was mined. Particularly, 
SVM, LR, MLP and GB showed promising results. These findings show the huge potential for UAV-
compatible hyperspectral sensors to improve in-season corn nitrogen management. The same applies to 
satellite hyperspectral sensing. The approach used in this study can also guide in the selection of bands 
for multispectral sensor engineering. We intend to test the stability of these algorithms across different 
fields, growth stages and hybrids to further confirm these findings. 
 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada 
 

8 

Acknowledgements 
The authors thank the Minnesota Department of Agriculture for supporting this project. 

References 
 
Abendroth L.J., Elmore R.W, Boyer M.J., and Marlay S.K.. 2011. Corn growth and development. PMR 1009. 

Iowa State University Extension and Outreach, Ames, Iowa. 
Breiman J. H., Friedman R. O. and Stone C. J.. 1984 ``Classification and Regression Trees,'' Belmont, CA: 

Wadsworth, 1984. 
 Chang C.C. and Lin C.J. 2001. LIBSVM: A Library for Support Vector Machines, 2001, Available online: 
 https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf (Last accessed April 30, 2018) 
Keeler B.L, Gourevitch J.S., Stephen Polasky, Forest Isbell, Chris W. Tessum, Jason D. Hill and Julian D. 

Marshall. 2016. The social costs of nitrogen. Science Advances Vol. 2, no. 10, e1600219 
Müller A.C. and Guido S. 2016.  Introduction to Machine Learning with Python: A Guide for Data Scientists. 

O'Reilly Media. 394 pg 
Pedregosa F., Varoquaux G., Gramfort A.  et al. 2011. Machine Learning in Python. Journal of Machine 

Learning Research, 12, 2825-2830., JMLR 12, pp. 2825-2830, 2011 
De Veaux R. D. and Ungar L. H. 1994. Multicollinearity: a tale of two non-parametric regressions. – In: 

Cheeseman P. and Oldford R. W. (eds), Selecting models from data: AI and statistics IV. Springer, pp. 293–
302. 

Zhang H., 2004. The Optimality of Naïve Bayes. In: Proceedings of the Seventeenth International Florida 
Artificial Intelligence Research Society Conference, Miami Beach, FL, USA. 


