Login

Tags

Filtered by : On-Farm Experimentation

Results100 articles found.

#OFE2021 Abstract Submission Deadline Extended

Abstracts for #OFE2021 are accepted until June 30, 2021. Submit your 150-word abstract for an e-presentations on On-Farm Experimentation activities or research. Topics addressing lessons learnt as well as research results are suitable and encouraged.

A Framework to Better Understand How Farmers Experiment Agroecological Practices

Farmers’ experimentation has long been identified, but until now, its dynamic has hardly been studied at all. The aim of this paper from Catalogna et al. (2022) is to understand the multiannual experimental itineraries that farmers follow when they try new agroecological practices on their farms. Results show how the representation of experimental itineraries could support farmers in their experiments and enable them to learn more efficiently.  

A GARDIAN of Big Data

GARDIAN is CGIAR’s (Consultative Group on International Agricultural Research) flagship data harvesters. It enables the discovery of publications and datasets from across the thirty-odd institutional publications and data repositories from CGIAR Centers and beyond. Actually, most data and publications are not stored in it but in other public databases and repositories. GARDIAN a key component of the Platform’s objective to establish the infrastructure, tools, and approaches to making CGIAR data Findable, Accessible, Interoperable, Reusable (FAIR). GARDIAN employs text mining to enrich the associated metadata to enhance discovery, and will soon test data mining techniques with cleaned, ...

A new knowledge exchange platform for agriculture

FarmPEP is a new knowledge exchange platform created for agriculture. It was initiated in January 2020 via an Innovate UK project with ADAS, Agri-techE, CCRI, Innovative Farmers, Open Coop and The Farming Forum with the aim of connecting Knowledge Exchange in agriculture, post-Covid19. Read more about the initial project here. It has been co-designed to connect across agriculture, enabling knowledge exchange through a new Performance Enhancement Platform. It aims to connect people, organisations, projects and resources to enable knowledge across farming to be shared, found, discussed, distilled and developed. Various topics include On-Farm Experimentation, Farm centric ...

A Practical Guide to On-Farm Pasture Research

A guide in 6 steps: 1) define the study question; 2) choose treatments; 3) how and where to conduct the study; 4) choose variables to measure; 5) conduct the experiment and analyze the results; 6) share your results.  

A Practical Way to Share Data With Confidence

Farmers often feel that they do not get the value back after sharing their data. The GODAN (Global Open Data for Agriculture and Nutrition) organization has recently made available an Agricultural Data Codes of Conduct Toolkit. By using the toolkit, they can understand and control what is done with the data, who can do what, and so on. They feel engaged, considered and this strengthens the farmer value structure. The toolkit allows farmers to select clauses that might be of relevance and to easily produce a printable and saveable Code of Conduct that provides the conceptual basis for general, scalable ...

A Reflexion on a New OFE-Based Agronomy

Accurate interpretation is the key to getting value from OFEs—good interpretation helps farmers learn more from each OFE, and manage with greater certainty as a result. Sadras and co-authors [Making Science More Effective for Agriculture: Advances in Agronomy, 163:153—77] call for an expanded role for agronomic logic to solve global crop production challenges. Yet many OFEs generate insights of complex and variable crop behaviour that call for stronger engagement of agronomy with these farmer-driven operations. In fact, some data scientists believe analysis can proceed without theory—an approach Taguchi adopted for dealing with complex systems. As we ...

A Review of Yield Stability Analysis Methods in Long-term Field Experiments (LTE)

This review provides guidance for the most commonly encountered methodological issues when analyzing yield stability in LTEs. Consistent use of the suggested guidelines and recommendations may provide a basis for robust analyses of yield stability in LTEs and to subsequently design stable cropping systems that are better adapted to a changing climate. Reckling, M., Ahrends, H., Chen, TW. et al. Methods of yield stability analysis in long-term field experiments. A review. Agron. Sustain. Dev. 41, 27 (2021). https://doi.org/10.1007/s13593-021-00681-4    

A Review on Precision Agroecology

Merging precision agriculture technology and agroecological principles offers a unique array of solutions driven by data collection, experimentation, and decision support tools. Precision agroecology provides a unique opportunity to synthesize traditional knowledge and novel technology to transform food systems. Duff, H.; Hegedus, P.B.; Loewen, S.; Bass, T.; Maxwell, B.D. Precision Agroecology. Sustainability 2022, 14, 106. https://doi.org/10.3390/su14010106  

Agricultural Research Data Network

The Agricultural Research Data Network (ARDN) provides tools and protocols to allow researchers to not only share their data, but to make their data interoperable and reusable. Additional tools allow end users of the data to combine and reformat ARDN data for quantitative analysis and modeling.  

Agriculture and Agri-Food Canada Living Laboratories Initiative

The Living Laboratories Initiative is an integrated approach to agricultural innovation that brings farmers, scientists, and other partners together to co-develop, test, and monitor new practices and technologies in a real-life context.  

An Efficient Geostatistical Analysis Tool for On-farm Experiments

A new paper proposes a spatially varying local cokriging method for large on-farm experimentation data which could lead to high-resolution site-specific farming treatment recommendations. Its accuracy of spatial prediction is compared with five other techniques. The open source code is accessible via a user-friendly interface of Quantum GIS. [Huidong Jin, K. Shuvo Bakar, Brent L. Henderson, Robert G.V. Bramley, David L. Gobbett. 2021. An efficient geostatistical analysis tool for on-farm experiments targeted at localised treatment. Biosystems Engineering 205:121–136, ISSN 1537–5110.]  

ARDN conference on agricultural data interoperability

A conference will be held on June 9, 2022, at the USDA National Agricultural Library to showcase the agricultural data interoperability work done as part of ARDN, the Agricultural Research Data Network. This work started with development of the AgMIP data interoperability standards in 2010 and has been expanded in collaboration with CGIAR and the USDA National Agricultural Library. The ARDN project team will describe methods developed for data annotation and sharing which can be used to “rescue” legacy data or be applied to new data sources to facilitate interoperability and reuse of our most valuable agricultural research product: data. The ...

Australian Farm Data Code

The Australian Farm Data Code aims to promote adoption of digital technology, by ensuring that farmers have comfort in how their data is used, shared and managed. It is intended to inform the service providers who manage data on behalf of farmers, and a tool for farmers to evaluate their policies.  

Big Data Promises and Obstacles

A virtual Workshop on Big Data Promises and Obstacles: Agricultural Data Ownership and Privacy was hosted by the Digital Agriculture “UASPSE” (Unmanned Aircraft Systems, Plant Sciences and Education) project, the University of Minnesota College of Food, Agricultural and Natural Resources Sciences and PepsiCo.   Recordings of the presentations: Cultivating Trust in Technology-Mediated Sustainable Agricultural Research The Law and Economics of Agricultural Data Privacy FAIR to FAIRS: Data Security by Design for the Global Burden of Animal Diseases Big Data, Data Privacy, and Plant and Animal Diseases Research Unmanned Aircraft Systems in Agriculture: Data Issues of Privacy, Ownership, and ...

Biweekly seminar series on Data Intensive Farm Management

The Data-Intensive Farm Management Project at the University of Illinois will be hosting again their biweekly seminar series where members of the DIFM/CIGOFT project will present their research. The seminar series will be held on every other Thursday's starting October 20, 2022. People who have tried the DFIM system and would like to share their experience are encouraged to reach out to Carli J. Miller (cjmille5@illinois.edu). You can connect via email with Carli J. Miller for the link to the seminars. Come and join us.  

Bridges for Open Sharing and Re-use of Data

A final report on Research Data Alliance (RDA) 18th Virtual Plenary Meeting is now available, capturing various takeaways from the November feeding. All videos from Virtual Plenary 18 are now available on YouTube. The videos are all now available for the public to listen to at their convenience. Have a special look at the "BO2 - IG Agricultural Data IGAD: Interest Group on Agricultural Data: A roadmap for our CoP" broadcast.  

Business Meeting Minutes - On-Farm Data Sharing (OFDS) Community at ICPA

26 June 2018, Montreal, Quebec, Canada   The meeting started at 6:35 pm with 11 people in attendance. After introductions, a discussion occurred about changing the focus of the OFDS Community from sharing of field-scale trial data collected on production farms to methods, protocols and analysis of on-farm experimentation.   The rationale for the change provided by Nicolas Tremblay and Tom Morris was that the proposed new Consortium for On-Farm Experimentation with leadership by Simon Cook would benefit from having a scientific home in ISPA, and because some of the objectives of the OFDS group have been shifted to an OFDS Working Group in ...

Call for papers on Farmer-Centric On-Farm Experimentation in Agronomy for Sustainable Development

Here is an exceptional opportunity to let the scientific community know about your On-Farm Experimentation (OFE) work. Contributions are most welcome to this Virtual Issue focusing on recent advances relative to Farmer-Centric On-Farm Experimentation (OFE). It coincides with OFE2021, the 1st Farmer-Centric On-Farm Experimentation Conference (13–15 October 2021) and is open to everyone. Indeed, participation in OFE2021 is not mandatory to submit OFE-related work to this special issue. Submissions end on March 1, 2022. The conference was supported by the OECD—CRP Sustainable Agricultural Systems, DigitAg, INRAE and the International Society of Precision Agriculture (ISPA).  

Comments, Reactions and Additions to the Nature Food paper?

You might consider submitting your work to the Special Issue in Agronomy for Sustainable Development. This virtual issue coincides with OFE2021, the 1st Farmer-Centric On-Farm Experimentation Conference (13–15 October 2021) and is open to everyone. Submissions end on March 1, 2022.  

Crowdsourcing Uses and Opportunities in Agriculture

Crowdsourcing, understood as outsourcing tasks or data collection by a large group of non-professionals, is increasingly used in scientific research and operational applications. Close connections with the farming sector, including extension services and farm advisory companies, could leverage the potential of crowdsourcing for both agricultural research and farming applications. [Julien Minet, Yannick Curnel, Anne Gobin, Jean-Pierre Goffart, François Mélard, Bernard Tychon, Joost Wellens, Pierre Defourny. Crowdsourcing for agricultural applications: A review of uses and opportunities for a farmsourcing approach. Computers and Electronics in Agriculture 142, Part A (2017): 126-138.]  

Data & Digital Revolution for Food Systems

To address the global food system challenges effectively, we must overcome fragmentation within and across sectors to act in a transdisciplinary fashion, bringing together the natural and social sciences with data and technology to drive food systems towards more favorable potential futures for humanity and the planet. The Global Coalition for Digital Food Systems Innovation participated to the “Forum COP26 Live”. The recording is available here. The Coalition involves FAO, World Bank, CGIAR Platform for Big Data in Agriculture, Mineral at X, Google, Digital Green, GEOGLAM, Hewlett Packard Enterprise, VARDA, Consumers International, Bayer Foundation, Mercy Corps, World ...

Data Becomes Really Useful Only When Aggregated - Survey Results

We launched a quick survey in the OFE-C info letter no. 5. To the question, “Do you use a standard for your agronomic data? » 85% answered, “No, but I would be interested,” nobody simply answered, “no” and 15% answered, “Yes.” Among the latter, the following standards were suggested: AgMIP / ICASA: Porter, C.H., C. Villalobos, D. Holzworth, R. Nelson, J.W. White, I.N. Athanasiadis, S. Janssen, D. Ripoche, J. Cufi, D. Raes, M. Zhang, R. Knapen, R. Sahajpal, K.J. Boote, J.W. Jones. 2014. Harmonization and translation of crop modeling data to ensure interoperability. ...

Data Sharing Toolkit

Data Sharing Toolkit could contribute to unlocking greater food security. CABI and the Open Data Institute (ODI) has launched a Data Sharing Toolkit which could contribute to greater food security in Sub-Saharan Africa and South Asia through better access to data on soil health, agronomy and fertilizer.  

Data Visualization and Analysis Tool for Synthetizing on‐farm Research Networks Data

ISOFAST simultaneously reports all trial results about the same management practice to simplify interpretation of multi‐sites and multi‐year summaries. [Laurent et al. 2021. Research Synthesis Methods 12(1). https://doi.org/10.1002/jrsm.1440.]  

Data-Driven Understanding of on Farm Yield Variation

Agriculture research uses “recommendation domains” to develop and transfer crop management practices adapted to specific contexts. The scale of recommendation domains is large when compared to individual production sites and often encompasses less environmental variation than farmers manage. Farmers constantly observe crop response to management practices at a field scale. These observations are of little use for other farms if the site and the weather are not described. The value of information obtained from farmers’ experiences and controlled experiments is enhanced when the circumstances under which it was generated are characterized within the conceptual framework of a ...

Data-Intensive Farm Management (DIFM) Project

Dr. David Bullock made a presentation entitled “Contributing to an International Cyber-Infrastructure for On-farm Precision Experimentation” before the OFE2021 “Farmer-Centric On-Farm Experimentation” Conference and the University of Bonn PhenoRob Institute.  The purpose of the trip was to publicize DIFM’s latest efforts and seek collaboration with researchers in the European Union. The DIFM team has also created a multistate Research Project, titled NC1210: Frontiers in On-Farm Experimentation which will enable researchers from all across the United States to collaborate and host meetings on an annual basis.  

Designing Your Own OFE - Bramley

Have a look at this classic 2006 guide (Designing Your Own OFE - Bramley) for farmers and their advisers on precision agriculture-based field experiments - their design, and the important issues to be considered in analysing the results. The guide was published by the Grains Research & Development Corporation (GRDC) of the Australian Government.  

Disparate Big Data in Systems Agriculture

In our data-rich world, identifying optimal systems for sustainable intensification or diversification is lacking a data management system across spatial and temporal resolutions including workflows, interpretation methodology, and a delivery structure. This paper offers solutions for developing a platform for bridging component parts (encompassing multiple scales and disciplines) to analyze system functionality for greater resiliency. [Tulsi P. Kharel Amanda J. Ashworth Phillip R. Owens Michael Buser. 2020. Spatially and temporally disparate data in systems agriculture: Issues and prospective solutions. Agronomy Journal 112 (5): 4498–4510. https://doi.org/10.1002/agj2.20285].  

Ecosystem for FAIR Data for Cross Domain Research

Have a look at a very packed page on the challenge around data with clarifications on the lexicon for terms such as “metadata, interoperability, governance, cleaning and big data.” We learn that “over the last two years, a CODATA-led pilot project has developed, tested and refined methods for aligning metadata specifications, taxonomies and ontologies to address these problems in a consensual fashion.”  

Efficient Water Management for Smallholders in Africa

Developed by the Virtual Irrigation Academy, piloted water front detectors (WFD) are a simple soil moisture tool that informs farmers when to irrigate and when to stop applying water to their fields. Now, freely available satellite data, covering a wide geographical area with repeated measurements over time, offers an alternative way to monitor and assess intervention impacts in fragmented smallholder landscapes. A wide range of freely available satellite data sources exist, capturing the Earth’s surface in various levels of detail. Landsat 8 satellite data provided the best available resolution for the period during which on-farm water management interventions took ...

Engage farmers in research

The one-size-fits-all approach of research has had success but advances are slowing. “How well crops and livestock grow depends on the interaction of genes, management and environment. As weather patterns fluctuate, gains in production will depend ever more on innovating in context. Big knowledge flowing from institutes to farm must be complemented by local knowledge.” Small-scale agricultural innovation will boost yields and protect the planet. See this Nature Comment.  

Establishing the Precision and Robustness of Farmers’ Crop Experiments

Precision farming experiments are generally incompatible with conventional statistical methods and alternative models of response variables (e.g. yield) must be estimated if the effect of the management decision is to be distinguished from other sources of variation. The model-based statistical analyses of these experiments require assumptions regarding the variation of the response variable. When these assumptions are inappropriate (e.g. if the correlation between response variable measurements is poorly modelled) then the inferences from the experiments can be unreliable. Marchant, B. et al. Establishing the precision and robustness of farmers’ crop experiments. Field Crops Res. 230, 31-45, doi:10.1016/...

Evidence Synthesis in Agronomy

There is a need to shift the focus from individual studies to the accumulating body of evidence concerning the agronomic and environmental benefits of innovative farming practices. Systematic reviews, evidence mapping, on-farm research, and meta-analyses are available for the integration of results but they are not yet used as frequently as one might expect. Both qualitative (systematic reviews, evidence maps, farm surveys) and quantitative syntheses (meta-analyses, modeling) have been published in a special issue of the European Journal of Agronomy. [Makowski, D. Editorial of the special issue “Evidence synthesis in agronomy”. European Journal of Agronomy 122 (2021) 126183. ISSN 1161-0301. https://...

FAIR Quality Information Guidelines

This “FAIR Quality Information guidelines” reviews FAIR principles from a “quality” perspective and summarizes this into guidelines for data producers, users, custodians and stewards. The guidelines are aimed at Earth Science datasets with these composing most of the examples. However, the advice is quite general, applicable to agricultural datasets.  

Farmer-based Research program on the Falkland Islands

On-farm experimentation (OFE) and precision agriculture technologies could be a potent mix for driving change in agricultural systems. Many of us recognize the significant opportunity in large, tech heavy and digitally enabled cropping enterprises. However, most of the world’s agricultural land is characterized by extensive, tech-poor livestock systems (LS). “OFE in LS” could help to introduce appropriate digital technologies in a way that is meaningful to farmers. Have a look at this recording from Matthew McNee, agronomy advisor in the Falkland Islands.  

Farmer-Led Innovation Network in the UK

A Farmer-Led Innovation Network (FLIN) was established in October 2018 to share knowledge and experiences and provide a collective advocacy voice for farmers in the UK. The main aim is to understand, learn from and “power-up” farmer-led innovation initiatives and increase their economic, environmental and social impact across the industry.  

Farmer-Led Research Webinar

A Farmer-Led Research Webinar was conducted last month by the School of Environmental Design and Rural Development, University of Guelph. The webinar mentioned the need for scientific rigor, yet keeping a balance between practical and robust protocol, on the one hand, and keeping data collection and research flexible, on the other hand. The recording is now available.  

Farmers’ experiments and scientific methodology

“Testing of only one variable at the same time,” has quite recently been described as one of the criteria that a scientific field trial has to satisfy. In projects involving cooperation between farmers and scientists, scientists have sometimes been “frustrated” with farmers whose experiments have not satisfied the one-variable requirement. Reportedly, this is “one of the points that has [led] research station scientists to dismiss farmer innovation.” This study investigates methodological and philosophical issues pertaining to farmers’ experiments such as the choice of interventions to be tested, the planning of experiments, and the ...

Farmers’ Experiments and Scientific Methodology

“Testing of only one variable at the same time,” has sometimes been described as one of the criteria that a scientific field trial has to satisfy. In projects involving cooperation between farmers and scientists, scientists have sometimes been “frustrated” with farmers whose experiments have not satisfied the one-variable requirement. Reportedly, this is “one of the points that has [led] research station scientists to dismiss farmer innovation.” This study investigates methodological and philosophical issues pertaining to farmers’ experiments such as the choice of interventions to be tested, the planning of experiments, and the means ...

Farmers’ Experiments and Scientific Methodology

This study investigates methodological and philosophical issues pertaining to farmers’ experiments, including the choice of interventions to be tested, the planning of experiments, and the use of control fields and other means to deal with confounding factors. [Hansson, Sven Ove. 2019. “Farmers’ Experiments and Scientific Methodology.” European Journal for Philosophy of Science 9 (3): 32. https://doi.org/10.1007/s13194-019-0255-7.]  

Farming to Meet Sustainable Development Goals in Africa: Reflections on Soil Health and Policy

This webinar reflects on how to achieve sustainable productivity gains through investments in soil health and knowledge. Reports have been commissioned on pioneering efforts in East and Southern Africa to engage and empower farmers and communities through approaches that specifically support disadvantaged youth and women. Highlights include innovations in extension, soil health monitoring and agricultural policy around sustainable intensification.  

Guide to Farmer's Crop Trials from ADAS

By working together with other farmers, suppliers, agronomists and scientists, farmers can use their own trials to bring fast learning, new findings and best practice for themselves and the industry at large, an approach ADAS calls “Agronōmics”. GPS and other modern technologies, along with thorough trial protocols, can make farm trialling straight forward and routine. Decisions and innovations can then become thoroughly validated and tailored to real farming conditions. This Guide to Farmer’s Crop Trials outlines processes leading to successful farm-trialling and how to avoid the pitfalls.  

Guidelines about On-Farm Experimentation

Building an “OFE wiki How-to”: seeking reports and guidelines about On-Farm Experimentation   The ISPA Community OFE (On-Farm Experimentation) is creating an online “OFE wiki How-to” to support On-Farm Experimentation initiatives worldwide. We are looking for: Relevant material aimed at practitioners to (re-)publish (or link toward) e.g. design manuals, implementation guidelines for farmers, best practice recommendations, scripts and protocols for analysts, statistical solutions and packages, accounts of experiences and lesson learnt for extension personnel, etc. People motivated to volunteer time and effort to help setup, compile, organise, write-up the Wiki (excellent opportunity for ...

Guidelines for Quality Information of Individual Digital Datasets

Informed decisions on whether and how to (re)use digital datasets are dependent on an understanding about the quality of the underpinning data and relevant information. This new paper addresses the challenges and promotes the creation and (re)use of freely and openly shared information about the quality of individual datasets. Members of several groups around the world have undertaken an effort to develop international community guidelines with practical recommendations for the Earth science community, collaborating with international domain experts.  

Guides from the Ecological Farmers Association of Ontario

The EFAO is a research program led by farmers which combine their curiosity with scientific rigour to answer challenging on-farm questions. Their website features an open access source to EFAO research protocols, reports and publications. Their research library lists a few on-farm research guides, two of them to be found below:  

Handbook on Systems Research for Agriculture

Farmers today face a complicated set of expectations while trying to make a living. These challenges are complex, yet most agricultural research has approached them from a reductionist standpoint. The handbook delivers guidance on how to form effective interdisciplinary and multi-stakeholder teams and how to plan, implement and analyze system experiments. The Sustainable Agriculture Research and Education (SARE) program is a decentralized competitive grants and education program.  

Harmonization of Heterogeneous Spatial Data

Heterogeneous spatial datasets are those for which the observations of different datasets cannot be directly compared because they have not been collected under the same set of acquisition conditions, with consistent sensors or under similar management practices, among others. This paper details and compares four automated methodologies that could be used to harmonize heterogeneous spatial agricultural datasets so that the data can be analyzed and mapped conjointly. [Leroux, C., Jones, H., Pichon, L. et al. Automatic harmonization of heterogeneous agronomic and environmental spatial data. Precision Agric 20, 1211–1230 (2019). https://doi.org/10.1007/s11119-019-09650-0]    

How do data and analytics from on-farm trials should be dealt with?

The OFE-C is seeking professionals and researchers dealing with data from on-farm experimentations or their analysis. We want to identify requirements and valid procedures leading to guidelines and eventually policy development. Volunteers will help select topics to cover in a webinar sometime this spring and the best presenters for that purpose. The workload will not be substantial. Please volunteer or suggest someone you know here.  

How do Research Protocols Need to be Adapted to Farmers Priorities?

Do farmers and researchers have the same criteria for gauging the success of an experimental trial in commercial conditions? Having the priorities of the farmers in mind, how should the researchers adapt their experimental approaches and analytics? White peg research or else? We are starting a structured thinking process on this question in order to frame the debate and develop consensual guidelines. Should you have elements to provide or want to be involved, drop us a line here.  

How do we enact co-innovation with stakeholders in agricultural research projects?

Mobilising co-innovation involves a complex interplay between contextual forces and facilitation processes. This interplay shapes the core co-innovation processes of joint framing, testing of solutions and creating new knowledge. The interplay between contextual and facilitation processes requires an adaptive approach to research design and management. [Ingram, J., Gaskell, P., Mills, J. & Dwyer, J. How do we enact co-innovation with stakeholders in agricultural research projects? Managing the complex interplay between contextual and facilitation processes. J. Rural Stud. 78, 65-77, doi:10.1016/j.jrurstud.2020.06.003 (2020).]  

How to Conduct Research on Your Farm or Ranch

This Sustainable Agriculture Research and Education (SARE) technical bulletin provides detailed instruction for crop and livestock producers, as well as educators, on how to conduct research at the farm level using practical strategies and peer-reviewed research findings. It also includes a comprehensive list of in-depth resources and real-life examples in order to stimulate on-farm research ideas and provide guidance.  

How to get Attention for Research Project Outputs

Jennifer Gibson, the Executive Director of Dryad in the UK explains Social Marketing which has been an important strategy in public health promotion for 30 years and has significant potential for helping to advance change in the research community.  

Inspiring from other sectors: UK Recovery Trial

The UK RECOVERY Trial is heralded as a huge success for its discovery of cheap and effective treatments to COVID even while the UK’s National Health Service was being inundated by the Tsunami of the Covid pandemic. The trial is credited with saving at least a million lives, using Dexamethasone, a cheap and readily available medication. It did so in rapid time, enrolling its first trial patient within days, its first life-saving treatment within weeks and changes to government policy within hours. The account of the RECOVERY Trial makes exciting reading in its own right, but ...

iSDAsoil: African soil properties at 30m resolution

Smallholder farmers need to find a way past the status quo and a path to modernizing their operations. The mapping system—iSDAsoil— provides African soil properties at 30m resolution, and advisory services possible at the level of the single small farm. iSDA’s ultimate goal is to help smallholders develop long-term sustainable businesses. It was founded by three research institutes—Rothamsted Research, the World Agroforestry Centre (ICRAF) and the International Institute of Tropical Agriculture (IITA).  

ISO 19115-1:2014

A digital geographic dataset is a representation of some model of the world for use in computer analysis and graphic display of information. To ensure that data are not misused, the assumptions and limitations affecting the creation of data must be fully documented. The objective of this part of ISO 19115 is to provide a model for describing information or resources that can have geographic extents. ISO 19115-1:2014 defines the schema required for describing geographic information and services by means of metadata.  

Krishi Vigyan Kendra Knowledge Network

The Krishi Vigyan Kendra (KVK) knowledge network is an integral part of the National Agricultural Research System (NARS) in India. It aims at the assessment of location-specific technology modules in agriculture and allied enterprises, through technology assessment, refinement and demonstrations. KVKs have been functioning as Knowledge and Resource Centres of agriculture technology supporting initiatives of public, private and voluntary sectors. This initiative has the potential of becoming very large and increasingly farmer-driven, leading researchers to consider farmers first.  

Living Lab - Quebec

The scientists, together with producers and their communities will co-create applicable solutions to improve the environmental performance of farms and watersheds and help improve the health of Lac Saint-Pierre, an enlargement of the St. Lawrence River in Quebec.  

Making Crop Data Sharing Responsible and Reliable

A GODAN webinar with Professor Sabina Lionelli and Dr. Hugh Williamson from Exeter University on Making Crop Data Responsible and Reliable that took place recently. The speakers concentrated on how social intelligence fuels ethical data management strategies for precision agriculture. The recording of the event is now available to watch here.  

Minutes of First On-Farm Data Sharing Community Meeting – ICPA – St. Louis, MO

Minutes of First On-Farm Data Sharing Community Meeting – ICPA – St. Louis, MO Union Station Hotel, Grand Ballroom B, 1 August 2016, 7:40 pm to 8:40 pm Attendees: Nicolas Tremblay, David Clay, Peter Kyveryga, Ignacio Ciampitti, Scott Murrell, Tom Morris, Gordon Reichert, Gary Hatfield, David Bonfil, Clive Blacker, Richard Heath, Rodrigo Tression, Lucas Haag, Suzanne Fey, Nicole Rabe, David Krueger, Cornelia Weltzien, Marilyn Kot, Guillermo Balboa. Tom Morris and Nicolas Tremblay thank everyone for attending the first meeting of the OFDS community. Many great ideas were provided and discussed. We will keep you informed about activities of the community by email. If you ...

Multi-criteria decision analysis in agriculture rarely consider important elements

The study of a corpus of 954 articles published by INRA scientists from 2007 to 2017 concludes that MCDA studies will need to include participatory science to involve stakeholders (i.e., public authorities, governmental agencies) and end users (i.e., farmers, producers, industry, consumers) in the construction of the multi-criterion evaluation but also in the resulting decisions.  

Nobel laureate shows the power of digital agriculture and on-farm experimentation

Michael Kremer got a share of the 2019 Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel for his work on experimental approaches to alleviating global poverty. He notably showed innovative uses of randomized control trials to answer key development questions related to agriculture. Kremer recently gave a lecture at the FAO (Food and Agriculture Organization of the United Nations) to show how mobile technologies and digital agriculture can create innovations reaching out to smallholders as well. Kremer also addressed the role of higher-resolution weather information, customized pest-control advice and the opportunities to improve supply chains and extension services. ...

OFE Data and Analytics Guidelines

The On-Farm Experimentation Data and Analytics Guidelines spin-off from the May 17, 2021, Data and Analytics webinar of the #OFE2021 Webinar Series. They have been put together by the OFE-C leadership with the help of the webinar presenters and the related working group. Their goal is to propose state-of-the art data, metadata and statistical analysis practices in the on-farm experimentation context.

OFE Webinar Series

The On-Farm Experimentation Community makes available here the recordings of the #OFE2021 Webinar Series. These four online sessions took place in May 2021 to discuss a range of key topics prepared by the conference committee together with dedicated working groups. Learn more about #OFE2021.

OFE-C Survey on Social Media Usage

  Dear OFE-C members, We are interested to learn how you use social media platforms, in order to plan our outreach strategy beyond the OFE-C Newsletters. To learn more, we have prepared a very short survey (2 multiple-choice questions) that can be completed in a few seconds. Please take a moment now to complete the survey below; we would appreciate it.  https://forms.gle/b7sG4yNDCwxojVn98 Thank you for your support.  

OFE: Experimental Approaches, Analytical Frameworks, Case Studies, and Impact

This open access 2019 special issue of Agronomy Journal 111(6): 2633–2768 is a must read. It contains papers that show how to improve data analyses and summarization of a large number of experiments containing similar treatments across years and locations.  

On-Farm Experimentation Webinars: Mark your calendar

We are putting together the #OFE2021, the First Conference on Farmer-Centric On-Farm Experimentation—Digital Tools for a Scalable Transformative Pathway. The conference will be preceded by four preparatory webinars: Value creation: Monday, May 10, 2021 People and processes: Wednesday, May 12, 2021 Data and analytics: Monday, May 17, 2021 Policy linkages: Wednesday, May 19, 2021 The times will correspond to 8 to 10 a.m. in Chicago (Central Daylight Time), 3 to 5 p.m. in Paris and 6:30 to 8:30 p.m. in India. Check the calendar on the ISPA home page for updates.  

On-Farm Replicated Strip Trials (Book Chapter)

This 2018 book chapter by Kyveryga et al. is about On-Farm Replicated Strip Trials. It provides a brief overview of how to plan, design, and conduct on-farm replicated strip trials. Practical considerations are listed when using different types of equipment. Examples are presented on how to summarize data from individual locations, as well as how to interpret experiments conducted. Applicable keywords are data analyses, economic analysis, environmental conditions, modern precision agriculture equipment, on‐farm replicated strip trials, research hypothesis, result interpretations, sustainable farming, within‐field management history, within‐field variability.  

On-Farm Research Guide from the Organic Farming Research Foundation

This guide from the Organic Farming Research Foundation (OFRF) is available to farmers for planning, carrying out, and analyzing experiments.  

On-farm Research on Canola from Brandon, Manitoba

Two papers on canola featuring on-farm research: Khakbazan, M., Moulin, A. & Huang, J. Economic evaluation of variable rate nitrogen management of canola for zones based on historical yield maps and soil test recommendations. Sci Rep 11, 4439 (2021). https://doi.org/10.1038/s41598-021-83917-3 Aaron J. Glenn, Alan P. Moulin, Amal K. Roy, Henry F. Wilson. Soil nitrous oxide emissions from no-till canola production under variable rate nitrogen fertilizer management. Geoderma 385, 114857 (2021) https://doi.org/10.1016/j.geoderma.2020.114857  

Once Upon a Time, the History of PA and OFE

Dr. David Charles, retired from Nottingham University in the UK is passionate with the history of agriculture. Here are two excerpts of what you can find in Dr. Charles short paper on the ISPA website. Early Precision Agriculture: In the 6th century A.D. Pope Gregory and Archbishop Augustine organised England on a system of parishes. Within these parishes there were usually three large communal fields divided into strips. Village families held randomised replicated strips in the three fields with the intention of giving them all fair shares of good and bad land. Early On-Farm Experimentations: Thomas Coke of ...

Open Ag Data Alliance

The Open Ag Data Alliance is an open project designed to bring interoperability, security, and privacy to agricultural data. The purpose of the Open Ag Data Alliance is to develop a standard API framework for automated data exchange. If a person has data stored in one place, and would like an app or service to be able to access it, they need only know the top-level domain where their data sits in order for the app or service to use it, providing permission when setting up the connection.  

Opportunity to Showcase your OFE Work

The 15th ICPA in June 2022 is an opportunity to virtually present your work in dedicated OFE sessions. Let’s continue the conversation initiated with the spring 2021 webinar series and the #OFE2021 Conference! Submit an abstract here.  

Postdoc Opportunity on OFE at University of Connecticut

The Soil Fertility and Soil Health Program in the Department of Plant Science and Landscape Architecture at the University of Connecticut, Storrs, CT seeks a highly motivated Post Doctorial Associate. The Postdoc will work with the PIs from multiple institutions (e.g., University of Illinois, Montana State University, Louisiana State University, University of Nebraska, USDA-ARS, etc.) to support projects focus on studying variable rate strategies using on-farm precision experiments, cutting-edge digital agricultural technologies, big data, and data analytics. The selected applicant will conduct on-farm experiment, analyze data, publish peer-reviewed journal articles, contribute to the development of decision-support tools, and participate ...

Prediction Intervals for On-farm Network Trials

This Laurent et al. paper shows how to prevent farmers from overoptimistic expectations that a significant effect at the overall population level will lead with high certainty to a yield gain on their own farms. [Laurent, A., Kyveryga, P., Makowski, D. & Miguez, F. A Framework for Visualization and Analysis of Agronomic Field Trials from On‐Farm Research Networks. Agron. J. 111, 2712-2723, doi:10.2134/agronj2019.02.0135 (2019).]  

Proceedings from the 1st African Conference on Precision Agriculture

The proceedings from the 1st African Conference on Precision Agriculture (AfCPA) are now available for download as a PDF (29 MB). The 1st AfCPA was held from 8-10 December 2020 under the hospices of the African Plant Nutrition Institute (APNI) in partnership with Mohammed VI Polytechnic University (UM6P) and the International Society of Precision Agriculture (ISPA).  

Proposed Method for Statistical Analysis of On-Farm Single Strip Treatment Trials

This paper explores statistical frameworks to quantify the effect of a single treatment strip using georeferenced yield monitor data and yield stability-based management zones. Cho, Jason B., Joseph Guinness, Tulsi Kharel, Ángel Maresma, Karl J. Czymmek, Jan van Aardt, and Quirine M. Ketterings. 2021. "Proposed Method for Statistical Analysis of On-Farm Single Strip Treatment Trials" Agronomy 11, no. 10: 2042. https://doi.org/10.3390/agronomy11102042  

Recording of the Workshop on Agricultural Data Codes of Conduct

The Global Open Data for Agriculture and Nutrition (GODAN) conducted a virtual Workshop on December 11, 2020, to offer an opportunity to find out more about the Agricultural Data Codes of Conduct Toolkit and GODAN’s work on Data Ethics. The toolkit provides a guide to data management best practice for any individuals or organizations (farmers, agri-businesses, associations, regional or national governments…) who collect, manage or share agricultural data. The recording of the 90-minute workshop which gathered about 300 participants can be found here.    

Repeated designs not sufficient to evaluate treatment effects accurately in OFE

The outcomes of on-farm experiments can support farmers’ decision-making processes, while inappropriate procedures would result in incorrect interpretations. Conventional statistical approaches (e.g., ordinary least squares regression) may not be appropriate for on-farm experiments because they are not capable of accurately accounting for the underlying spatial variations in a particular response variable (e.g., yield data). A combination of a repeated design and an anisotropic model is required to improve the precision of the experiments. [Tanaka,T.S.T. 2020. Assessment of research frameworks for on-farm experimentation through a simulation study of wheat yield in Japan . Preprint 12741.]  

Seeking Great Photos: “Doing” On-Farm Experimentation

We are seeking free-of-right photos illustrating co-learning by scientists, farmers and professionals around on-farm experimentation and digital opportunities in a broad range of systems and contexts. If you have pictures that eloquently illustrate this idea that you are willing to share, please drop us an email. It will be greatly appreciated!  

SharedIt link for Nature Food paper: OFE to Transform Global Agriculture

Our apologies for not having offered the opportunity to consult the full Nature Food paper in our last communication. The publisher does not allow open access for that kind of paper but it does provide an alternative in the form of this SharedIt link.   On-Farm Experimentation Community (OFE-C) co-leads, Simon Cook and Nicolas Tremblay are among the authors of a newly released and highly collaborative Nature Food paper on OFE. This timely work acknowledges and celebrates the diversity of approaches and views on farmer-centric OFE internationally. As the visionary Professor Simon Cook put it, “OFE is ...

Smartphone App Designed for, and With, Farmers

As the use of smartphone technology is becoming increasingly popular in the agricultural context, there is a need to consider how farmers have adapted to this form of technology. The current study examined the factors which influence Irish farmers’ engagement with smartphone use and new smartphone apps and explored the supports required by farmers to successfully engage with smartphone apps for agriculture use. Kenny, U. and Regan, Á., 2021. Co-designing a smartphone app for and with farmers: Empathising with end-users’ values and needs. Journal of Rural Studies, 82, pp.148-160.  

Specific Treatment Responses in On-Farm Precision Experimentation

Site-specific information about crop responses to agronomic treatments is needed. Geographically weighted regression was applied to generate local regression coefficients, which were used to delineate response zones in fields. This is a way to reevaluate expectations on variable rate prescriptions guided largely by soil and variability. Trevisan, R.G., Bullock, D.S., Martin, N.F. Site-Specific Treatment Responses in On-Farm Precision Experimentation. Preprints 2019, 2019020007 (doi: 10.20944/preprints201902.0007.v1).  

Successful approaches for on-farm experimentation

On-farm experiments are used increasingly in agronomic research because they are commercially relevant, but they can carry greater risks of failure than traditional small plot experiments conducted by scientists. Experimental failures can result from farmer withdrawal, errors in treatment application or harvest, or non-provision of yield data by farmers. This paper describes the development and testing of approaches for on-farm experimentation and concludes which approaches should be adopted to maximise success. The programme of work included the largest on-farm research network in the UK, with farmers conducting around 50 on-farm experiments per year from 2017 to 2019 to compare fungicide programmes in winter ...

The Analysis of Agricultural Experiments: A brief History

From Fisher in 1926 to nowadays much needs to change in the analysis of agricultural experimentations. Charles (2021) guest editorial in The Journal of Agricultural Science focuses on the 20th century. Even before the digital age, experiments intended to resolve difference questions were replaced by experiments designed to answer questions about the magnitude of differences and responses to treatments. The review raises a question: namely is it time to revisit Bayesian statistics on the grounds that visionaries and innovators are prone to subjectivity? [Charles D. (2020). Guest Editorial: The analysis of agricultural experiments: a brief history of the techniques of the 20th century. ...

The Data Streams Podcast

Data Streams is a collection of conversations among members in the Research Data Alliance (RDA) community about challenges they face as researchers and data experts in managing the massive quantities of research data and how together, they are finding solutions and proving the value of open research data sharing and reuse.  

The Farmers’ Perspective on Data Governance

Fragmented and unclear data governance arrangements may weaken farmers’ willingness to adopt digital solutions. This, in turn, may reduce the availability and accessibility of agricultural data for policymaking, for the agricultural innovation system, and for developing services for farmers. This OECD report focuses on farmers’ concerns around access, sharing and use of agricultural data and explores whether and how existing policy frameworks and other sectoral initiatives can help to foster greater trust. [Jouanjean, M., et al. (2020), “Issues around data governance in the digital transformation of agriculture: The farmers’ perspective,” OECD Food, Agriculture and Fisheries Papers, ...

The Long-Term Agroecosystem Research Network (LTAR)

The LTAR network integrates question-driven research projects with common measurements on multiple agroecosystems (croplands, rangelands, and pasturelands) and develops new technologies to address agricultural challenges and opportunities. The LTAR network provides common measurements and data streams that complement other federally funded national networks. Their data management working group strives to make LTAR data aligned with the FAIR guiding principles, to be findable, accessible, interoperable, and reusable. The LTAR network fosters data sharing principles and guidelines with the intent that all LTAR data will be available for research collaboration and the development of agroecosystem management recommendations and education.  

The Research Data Alliance and Agriculture

With over 10,000 members from 145 countries, the Research Data Alliance (RDA) provides a neutral space to develop and adopt infrastructure that promotes data-sharing and data-driven research to enable the open sharing and re-use of data. RDA has a grass roots, inclusive approach covering all data lifecycle stages, engaging data producers, users and stewards, addressing data exchange, processing, and storage. Generic topics of its interest are social hurdles on data sharing, education and training challenges, data management plans and certification of data repositories, disciplinary and interdisciplinary interoperability, as well as technological aspects.   The RDA is constituted of different elements, ...

The Way Farmers Learn

Acknowledging how farmers learn is a forced passage to the impact of knowledge generation and the way to link extension to research. This Janvry et al. (2016) paper presents an interesting perspective. It presents a few concepts such as “private learning” (learning-by-doing) by Bayesian updating. This consists of direct learning from own individual actions over time. There is also “social learning” (learning from others) with Bayesian updating and aggregation of observations collected from others according to a chosen pattern of weights.  

Thirty-nine Hints for FAIR Data in Agriculture and Nutrition

All data scientists know the importance of good and unambiguous definitions of data dimensions, crucial to all phases of data analysis. However, semantics is often left implicit in the data, the semantic resources used to create the data are not easily accessible, or available in non-standard formats, non (easily) machine-readable – all factors hampering the possibility of reusing data in information systems or integrating it with other datasets and ultimately limiting the interoperability of data. This paper presents recommendations to engage agrifood sciences in a necessary transition to leverage data production, sharing and reuse and the adoption of the « ...

Towards Farmer-led Research: A Guidebook

What is farmer-led research? What are some examples and the benefits? The Ecological Farmers Association of Ontario (EFAO) has experience and share its learned lessons in this guidebook.  

Transforming Agricultural Innovation for People, Nature and Climate

The UK has launched the Transforming Agricultural Innovation for People, Nature and Climate campaign to catalyze a step change in agricultural innovation. The series of webinars will present the findings of five evidence reviews commissioned under the Research, Development and Deployment (RD&D) strand of the Sustainable Agriculture component of the COP26 Nature Campaign. The second webinar in the series focuses on agroecology and climate change adaptation and mitigation. Agroecology is increasingly promoted as a means to transform food systems globally, yet the evidence for generating large-scale impacts on climate change adaptation and mitigation in developing countries has been ...

Unlocking Value by Analyzing Commercial Data

Data from commercial oil palm operations were analyzed for a whole plantation to rank individual blocks according to their ability to respond to applied fertilizer. The ranking was used to guide fertilizer management by diverting fertilizer from unresponsive blocks to those that are more responsive. Although the inferences lack statistical validity, they appear robust from a practical viewpoint. They are easy to evaluate in the field, since they require no upscaling from or interpretation of experimental data. [Oberthür, T. et al. Plantation Intelligence applied Oil Palm operations: unlocking value by analyzing commercial data. The Planter 93, 339–351 (2017)]  

Webcast Maximize Value On-Farm Research

A Precision Ag Insight webcast on Maximizing the Value of On-Farm Research was presented on December 8th 2016 by Godsey Precision Ag. You can find the slides and the recording here.

Webinar: Responsible Digital Agroecology, from Farm to Fork

The “Responsible Digital Agroecology, from farm to fork” webinar will be held on Thursday, October 13, 4–6 p.m. (Paris time). It is organized by #DigitAg (INRAE-CIRAD) and CGIAR. How can innovations in digital agriculture ensure inclusion and equity for all actors in the value chain? Today, new digital tools and services make digitalization more suitable to smallholders and could boost transition towards agroecology, climate-smart agriculture and inclusiveness. Research efforts must now concentrate both on technological development and on the organizational and policy evolution necessary to maximize the benefits while avoiding risks. More, original ways to carry out research, ...

Where in the World are Farmer-Centric OFEs?

The OFE-C is consolidating occurrences of farmer-led research, farmer-centric on-farm experimentation, living labs, or the like. Our goal is to map and feature these initiatives all around the world. Drop us a short notice about what and whom you know!   

Which of These Aspects of On-farm Experimentation are of Interest to you? Survey Results

Thanks to the many who have answered our quick survey posted in the On-Farm Experimentation Community Info No. 1. We asked you to select any combination among the following themes: Creation/sharing of value and intellectual property Farmer-centric, co-learning and social aspects Data, metadata, analytics, modelling, artificial intelligence Transformation through policy, legislation and investment All aspects generated interest, but primarily the data and analytics, and the farmer-centric ones. We will soon come back to you with more about how we intend to make progress along those lines.  

‘A Decade of Data’: Celebrating 10 Years of the Research Data Alliance

In 2023 the Research Data Alliance will celebrate its 10th anniversary and will commemorate this important milestone by organizing a series of international and regional events and activities. Each month of 2023, from February to November, will be dedicated to a specific theme related to research data management of relevance to the RDA community. The RDA Secretariat and regional bodies are organizing various thematic events and activities (e.g., webinars, workshops and podcasts). February: FAIR data, software and hardware March: A Decade of Data: The RDA’s 20th Plenary meeting April: Health and medical data  May:&...

“Houston, we have a (data) problem.”

Farmers struggle to use data for decision-making. A survey of over 1500 farmers demonstrated high rates of data collection but low rates of data usage. Participants to the conference “Identifying Obstacles to Applying Big Data in Agriculture” defined scenarios in which on-farm decisions could benefit from the application of Big Data. Common obstacles identified included errors in the data, inaccessibility of the data, unusability of the data, incompatibility of data generation and processing systems, the inconvenience of handling the data, the lack of a clear return on investment (ROI) and unclear ownership. One solution: Standards or guidelines for farmers ...