Proceedings

Find matching any: Reset
Mansor, S
Moro, E
Zhou, C
Schmidt, R
Hüging, H
Jørgensen, O.J
Add filter to result:
Authors
Liaghat, S
Mansor, S
Shafri, H
Meon, S
Ehsani, R
Azam, S
Noh, N
Sun, C
Ji, Z
Qian, J
Li, M
Zhao, L
Li, W
Zhou, C
Du, X
Xie, J
Wu, T
Qu, L
Hao, L
Yang, X
Bøgild, A
Nielsen, S.H
Jacobsen, N.J
Jager-Hansen, C
Jørgensen, R.N
Jensen, K
Jørgensen, O.J
Bareth, G
Jenal, A
Hüging, H
Pereira, F.R
Dos Reis, A.A
Freitas, R.G
Oliveira, S.R
Amaral, L.R
Figueiredo, G.K
Antunes, J.F
Lamparelli, R.A
Moro, E
Pereira, N.D
Magalhães, P.S
Jha, G
Nazrul, F
Nocco, M
Pagé Fortin, M
Whitaker, B
Diaz, D
Gal, A
Schmidt, R
Dey, S
Topics
Precision Horticulture
Information Management and Traceability
Food Security and Precision Agriculture
Applications of Unmanned Aerial Systems
Big Data, Data Mining and Deep Learning
Weather and Models for Precision Agriculture
Type
Poster
Oral
Year
2012
2022
2024
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Early Detection of Oil Palm Fungal Disease Infestation Using A Mid-Infrared Spectroscopy Technique

Basal stem rot (BSR) caused by Ganoderma boninense is known as the most destructive disease of oil palm plantations in Southeast Asia. Ganoderma could potentially reduce the market share of palm oil for Malaysia. Currently Malaysia produces about 50% of the world’s supply of palm oil. Early, accurate, and non-destructive diagnosis of Ganoderma fungal infection is critical for management of this disease. Early disease management of Ganoderma could also prevent great losses in production and... S. Liaghat, S. Mansor, H. Shafri, S. Meon, R. Ehsani, S. Azam, N. Noh

2. Towards a Multi-Source Record Keeping System for Agricultural Product Traceability

Agricultural production record keeping is the basis of traceability system. To resolve the problem including single method of information acquisition, weak ability of real-time monitoring and low credibility of history information in agricultural production process, the... C. Sun, Z. Ji, J. Qian, M. Li, L. Zhao, W. Li, C. Zhou, X. Du, J. Xie, T. Wu, L. Qu, L. Hao, X. Yang

3. A Low Cost, Modular Robotics Tool Carrier for Precision Agriculture Research

Current research within agricultural crop production focus on using autonomous robot technology to optimize the production efficiency, enhance sustainability and minimize tedious, monotonous and wearing tasks. But progress is slow partly... A. Bøgild, S.H. Nielsen, N.J. Jacobsen, C.L. Jaeger-hansen, R.N. Jørgensen, K. Jensen, O.J. Jørgensen

4. N-management Using Structural Data: UAV-derived Crop Height As an Estimator for Biomass, N Concentration, and N Uptake in Winter Wheat

In the last 15 years, sensors mounted on Unmanned Aerial Vehicles (UAVs) have been intensively investigated for crop monitoring. Besides known remote sensing approaches based on multispectral and hyperspectral sensors, photogrammetric methods became very important. Structure for Motion (SfM) and Multiview Stereopsis (MVS) analysis approaches enable the quantitative determination of absolute crop height and crop growth. Since the first paper on UAV-derived crop height was published by Bendig et... G. Bareth, A. Jenal, H. Hüging

5. A Framework for Imputation of Missing Parts in UAV Orthomosaics Using Planetscope and Sentinel-2 Data

In recent years, the emergence of Unmanned Aerial Vehicles (UAV), also known as drones, with high spatial resolution, has broadened the application of remote sensing in agriculture. However, UAV images commonly have specific problems with missing areas due to drone flight restrictions. Data mining techniques for imputing missing data is an activity often demanded in several fields of science. In this context, this research used the same approach to predict missing parts on orthomosaics obtained... F.R. Pereira, A.A. Dos reis, R.G. Freitas, S.R. Oliveira, L.R. Amaral, G.K. Figueiredo, J.F. Antunes, R.A. Lamparelli, E. Moro, N.D. Pereira, P.S. Magalhães

6. Prediction of Field-scale Evapotranspiration Using Process Based Modeling and Geostatistical Time-series Interpolation

Irrigation scheduling depends on the combination of evaporative demand from the atmosphere, spatial and temporal heterogeneity in soil properties and changes in crop canopy during a growing season. This on-farm trial is based on data collected in 72-acre processing tomato field in Central Valley of California. The Multiband Spectrometric Arable Mark 2 sensors at three different locations in the field. Multispectral and thermal imagery provided by Ceres Imaging were collected eight times during... G. Jha, F. Nazrul, M. Nocco, M. Pagé fortin, B. Whitaker, D. Diaz, A. Gal, R. Schmidt