Proceedings

Find matching any: Reset
VANDOORNE, B
Flippo, D
Vasseur, E
Verma, A.P
Whalen, J
Vancutsem, F
Cho, Y
Upadhyaya, P
Franzen, D.W
Chen, X
Company, J
Owens, J
Fox, C.W
Add filter to result:
Authors
Arno, J
DEL MORAL, I
Escolà, A
Company, J
MARTÍNEZ-CASASNOVAS, J.A
MASIP, J
SANZ, R
ROSELL, J.R
Vancutsem, F
Leemans, V
Ferrandis Vallterra, S
Bodson, B
Destain, J
Destain, M
Dumont, B
Dumont, B
Vancutsem, F
Destain, J
Bodson, B
Lebeau, F
Destain, M
Sung, N
Chung, S
Kim, Y
han, K
Choi, J
Kim, J
Cho, Y
Jang, S
Sharda, A
Badua, S
Flippo, D
Ciampitti, I
Griffin, T.W
Binch, A
Cooke, N
Fox, C.W
Warner, D
Lacroix, R
Vasseur, E
Lefebvre, D
Ekanayake, D.C
Owens, J
Werner, A
Holmes, A
Fadul-Pacheco, L
Bisson, G
Lacroix, R
Séguin, M
Roy, R
Vasseur, E
Lefebvre, D
Leksono, E
Adamchuk, V
Whalen, J
Buelvas, R
Adamchuk, V
Debbagh, M
Madramootoo, C
Whalen, J
LENOIR, A
VANDOORNE, B
DUMONT, B
Li, D
Miao, Y
Fernández, .G
Kitchen, N.R
Ransom, C.
Bean, G.M
Sawyer, .E
Camberato, J.J
Carter, .R
Ferguson, R.B
Franzen, D.W
Franzen, D.W
Franzen, D.W
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Shanahan, J.F
Upadhyaya, P
Karkee, M
Zhang, X
Kashetri, S
Saxena, A
Dash, M
Verma, A.P
Miao, Y
liu, X
Tian, Y
Zhu, Y
Cao, W
Cao, Q
Chen, X
Li, Y
Piya, N.K
Sharda, A
Persch, J.R
Flippo, D
Harsha Chepally, R
Piya, N.K
Sharda, A
Flippo, D
Topics
Proximal Sensing in Precision Agriculture
Modeling and Geo-statistics
Sensor Application in Managing In-season Crop Variability
Engineering Technologies and Advances
Applications of Unmanned Aerial Systems
Farm Animals Health and Welfare Monitoring
On Farm Experimentation with Site-Specific Technologies
Precision Dairy and Livestock Management
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Wireless Sensor Networks
Site-Specific Nutrient, Lime and Seed Management
ISPA Community: Nitrogen
Big Data, Data Mining and Deep Learning
Geospatial Data
In-Season Nitrogen Management
Precision Crop Protection
Precision Agriculture for Sustainability and Environmental Protection
Type
Poster
Oral
Year
2012
2010
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results18 paper(s) found.

1. A Model For Wheat Yield Prediction Based On Real-time Monitoring Of Environmental Factors

... B. Dumont, F. Vancutsem, J. Destain, B. Bodson, F. Lebeau, M. Destain

2. Mapping the Leaf Area Index In Vineyard Using a Ground-Based LIDAR Scanner

The leaf area index (LAI) is defined as the one-sided leaf area per unit ground area and is probably the most widely used index to characterize grapevine vigour. However, direct LAI measurement requires the use of destructive leaves sampling methods which are costly and time-consuming and so are other indirect methods. Faced with these techniques, vineyard leaf area can be indirectly estimated using ground-based LIDAR sensors that scan the vines and get information about the geometry and/or structure... J. Arno, I. Del moral, A. Escolà, J. Company, J.A. MartÍnez-casasnovas, J. Masip, R. Sanz, J.R. Rosell

3. Assessing the Potential of an Algorithm Based On Mean Climatic Data to Predict Wheat Yield

In crop yield prediction, the unobserved future weather remains the key point of predictions. Since weather forecasts are limited in time, a large amount of information may come from the analysis of past weather data. Mean data over the past years and stochastically generated data are two possible ways to compensate the lack of future data. This research aims to demonstrate that it is possible to predict... F. Vancutsem, V. Leemans, S. Ferrandis vallterra, B. Bodson, J. Destain, M. Destain, B. Dumont

4. Evaluation of a Sensor and Control Interface Module for Monitoring of Greenhouse Environment

Protected horticulture in greenhouses and plant factories has been increased in many countries due to the advantages of year-round production in controlled environment for improved productivity and quality. For protected horticulture, environmental conditions are monitored and controlled through wired and wireless devices. Various devices are used for monitoring and control of spatial and temporal variability in crop growth environmental conditions. Recently, various sensors and control devices,... N. Sung, S. Chung, Y. Kim, K. Han, J. Choi, J. Kim, Y. Cho, S. Jang

5. Real-time Gauge Wheel Load Variability on Planter with Downforce Control During Field Operation

Downforce control allows planters to maintain gauge wheel load across a range of soil resistance within a field. Downforce control is typically set for a target seed depth and either set to manually or automatically control the gauge wheel load. This technology uses load cells to actively regulate downforce on individual row units by monitoring target load on the gauge wheels. However, no studies have been conducted to evaluate the variability in gauge wheel load observed during planter operation... A. Sharda, S. Badua, D. Flippo, I. Ciampitti, T.W. Griffin

6. Rumex and Urtica Detection in Grassland by UAV

Previous work (Binch & Fox, 2017) used autonomous ground robotic platforms to successfully detect Urtica (nettle) and Rumex (dock) weeds in grassland, to improve farm productivity and the environment through precision herbicide spraying. It assumed that ground robots swathe entire fields to both detect and spray weeds, but this is a slow process as the slow ground platform must drive over every square meter of the field even where there are no weeds. The present study examines a complimentary... A. Binch, N. Cooke, C.W. Fox

7. Detection and Monitoring the Risk Level for Lameness and Lesions in Dairy Herds by Alternative Machine-Learning Algorithms

Machine-learning methods may play an increasing role in the development of precision agriculture tools to provide predictive insights in dairy farming operations and to routinely monitor the status of dairy cows. In the present study, we explored the use of a machine-learning approach to detect and monitor the welfare status of dairy herds in terms of lameness and lesions based on pre-recorded farm-based records. Animal-based measurements such as lameness and lesions are time-consuming, expensive... D. Warner, R. Lacroix, E. Vasseur, D. Lefebvre

8. Delineation of 'Management Classes' Within Non-Irrigated Maize Fields Using Readily Available Reflectance Data and Their Correspondence to Spatial Yield Variation

Maize is grown predominantly for silage or gain in North Island, New Zealand. Precision agriculture allows management of spatially variable paddocks by variably applying crop inputs tailored to distinctive potential-yield limiting areas of the paddock, known as management zones. However, uptake of precision agriculture among in New Zealand maize growers is slow and limited, largely due to lack of data, technical expertise and evidence of financial benefits. Reflectance data of satellite and areal... D.C. Ekanayake, J. Owens, A. Werner, A. Holmes

9. Usage of Milk Revenue Per Minute of Boxtime to Assess Cows Selection and Farm Profitability in Automatic Milking Systems

The number of farms implementing robotic milking systems, usually referred as automatic milking systems (AMS), is increasing rapidly. AMS efficiency is a priority to achieve high milk production and higher incomes from dairy herds. Recent studies suggested that milkability (i.e., amount of milk produced per total time spent in the AMS [kg milk/ minute of boxtime]) could be used for as a criteria for genetic evaluations. Therefore, an indicator of milkability was developed, which combines economical... L. Fadul-pacheco, G. Bisson, R. Lacroix, M. Séguin, R. Roy, E. Vasseur, D. Lefebvre

10. Development of a Manual Soil Sensing System for Measuring Multiple Chemical Soil Properties in the Field

Variable Rate Fertilizer Application (VRA) requires the input of soil chemical data. One of the preferred methods for analyzing soil chemical properties in the field is by using Ion Selective Electrodes (ISEs). To accommodate portability in soil measurements, a manual soil sampling system was developed. Nitrate, Phosphate and pH ISEs were integrated to provide a general outlook on the condition of essential soil nutrients. These ISEs were placed on a modified hand-held soil sampler equipped... E. Leksono, V. Adamchuk, J. Whalen, R. Buelvas

11. Development of a Wireless Sensor Network for Passive in situ Measurement of Soil CO2 Gas Emissions in the Agriculture Landscape

Quantification of soil Greenhouse Gas (GHG) emissions from agricultural fields is essential for understanding the environmental impact of intensive crop and livestock production systems. Current methods of analysis include flux calculations derived from the concentration of gases (CO2, N2O, CH4) exchanged between soil and the atmosphere. Samples of these GHG are obtained manually by closed non-steady state non-flow through,or “static”, chambers and analyzed ex situvia gas... V. Adamchuk, M. Debbagh, C. Madramootoo, J. Whalen

12. A Low-tech Approach to Manage Within Field Variability – Toward a Territorial Scale Application

Managing within field variability is promising to achieve European objectives of sustainability in crop production. Technological development has allowed to precisely characterize fields heterogeneity in space and time. However, learnings from low adoption of yield maps in west-European context have highlighted the importance of reliable methods to support decisions. Blackmore et al. designed a delineation method considering yield as an integrative variable that reflects spatial and temporal... A. Lenoir, B. Vandoorne, B. Dumont

13. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US Midwest

Effective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan

14. Automated Lag Phase Detection in Wine Grapes

Crop yield estimation, an important managerial tool for vineyard managers, plays a crucial role in planning pre/post-harvest operations to achieve desired yield and improve efficiency of various field operations. Although various technological approaches have been developed in the past for automated yield estimation in wine grapes, challenges such as cost and complexity of the technology, need of higher technical expertise for their operation and insufficient accuracy have caused major concerns... P. Upadhyaya, M. Karkee, X. Zhang, S. Kashetri

15. Cloud Correction of Sentinel-2 NDVI Using S2cloudless Package

Optical satellite-derived Normalized Difference Vegetation Index (NDVI) is by far the most commonly used vegetation index value for crop monitoring. However, it is quite sensitive to the cloud, and cloud shadows and significantly decreases its usability, especially in agricultural applications. Therefore, an accurate and reliable cloud correction method is mandatory for its effective application. To address this issue, we have developed an approach to correct the NDVI values of each and every... A. Saxena, M. Dash, A.P. Verma

16. Developing a Wheat Precision Nitrogen Management Strategy by Combining Satellite Remote Sensing Data and WheatGrow Model

Precision nitrogen (N) management (PNM) is becoming increasingly popular due to its ability to synchronize crop N demand with soil N supply spatiotemporally. The previous evidence has demonstrated that variable rate fertilization contributes to achieving high yields and high efficiencies. However, PNM at the regional level remains unclear and challenging. This study aims to develop a novel management zone (MZ)-based PNM strategy (MZ-PNM) to optimize the basal and topdressing N rates at the regional... Y. Miao, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, X. Chen, Y. Li

17. Design and Development of a Spraying System for Under Canopy Rover and Its Integration with Computer Vision System

Chemical spraying such as herbicides, insecticides are essential in any agricultural field for controlling pest, weed etc. and ultimately increasing yield. About one-third of agricultural yields rely on the utilization of pesticides. However, around 3 billion kilograms of pesticides are used worldwide every year and effective utilization of it is merely 1%. The precise application of these chemicals is necessary to reduce negative impacts on environment as well as human health. The application... N.K. Piya, A. Sharda, J.R. Persch, D. Flippo, R. Harsha chepally

18. System Development for Application and Testing of Spray-on Biodegradable Mulch

Plastic mulch films have long been a staple in agriculture and plays a critical part in the specialty crop production. Plastic mulch provides benefits such as conserving soil moisture, suppress weed growth and increase soil temperature. However, the widespread use of petroleum based plastic mulch films have raised concerns due to challenges associated with their removal and environmental impact. Plastic mulch has to be removed after every growing season. During the removal process, microplastic... N.K. Piya, A. Sharda, D. Flippo