Proceedings
Authors
| Filter results17 paper(s) found. |
|---|
1. Site-specific Management For Biomass Feedstock Production: Development Of Remote Sensing Data Acquisition SystemsEfficient biomass feedstock production supply chain spans from site-specific management of crops on field to the gate of biorefinery. Remote sensing data acquisition systems have been introduced for site-specific management, which is a part of the engineering solutions for biomass feedstock production. A stand alone tower remote sensing platform was developed to monitor energy crops using multispectral imagery. The sensing system was capable of collecting RGB and CIR images during the crop growing... T. Ahamed, L. Tian, Y. Zhang, Y. Xiong, B. Zhao, Y. Jiang, K. Ting |
2. Evaluation of Photovoltaic Modules at Different Installation Angles and Times of the DaySeveral electricity-consuming components for cooling and heating, illumination, ventilation, and irrigation are used to maintain proper environments of protected crop cultivation facilities. Photovoltaic system is considered as one of the most promising alternative power source for protected cultivation. Effects of environment,... S. Chung, J. Kong, Y. Huh, K. Bae, S. Hur, D. Lee, Y. Chae |
3. Near-Real-Time Remote Sensing And Yield Monitoring Of Biomass CropsThe demand for bioenergy crops production has increased tremendously by the biofuel industry for substitution of traditional fuels due to the economic availability and environmental benefits. Pre-Harvest monitoring of biomass production is necessary to develop optimized instrumentation and data processing systems for crop growth, health and stress monitoring; and to develop algorithms for field operation scheduling. To cope with the problems of missing critical... Y. Zhao, L. Li, K.C. Ting, L.F. Tian, T. Ahamed |
4. Towards Data-intensive, More Sustainable Farming: Advances in Predicting Crop Growth and Use of Variable Rate Technology in Arable Crops in the NetherlandsPrecision farming (PF) will contribute to more sustainable agriculture and the global challenge of producing ‘More with less’. It is based on the farm management concept of observing, measuring and responding to inter- and intra-field variability in crops. Computers enabled the use of Farm Management Information Systems (FMIS) and farm and field specific Decision Support Systems (DSS) since mid-1980s. GIS and GNSS allowed since ca. 2000 geo-referencing of data and controlled traffic... C. Kempenaar, F. Van evert, T. Been, C. Kocks, K. Westerdijk, S. Nysten |
5. Agronomic Characteristics of Green Corn and Correlations with Productivity for the Establishment of Management Zones in Vale Do Ribeira, SP, BrazilIn Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, V.S. Akune, S.H. Benez, L.C. Citon, P.H. Nakazawa, A.J. Santana neto |
6. Integrated Approach to Site-specific Soil Fertility ManagementIn precision agriculture the lack of affordable methods for mapping relevant soil attributes is a fundamental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor |
7. Spatial Variability and Correlations Between Soil Attributes and Productivity of Green Corn CropIn Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, S.H. Benez, P.H. Nakazawa, A.J. Santana neto, L.C. Citon, V.S. Akune |
8. Reverse Modelling of Yield-Influencing Soil Variables in Case of Few Soil DataOur hypothesis was that simple models can be applied to predict yield by using only those yield data which spatially coincide with the soil data and the remaining yield data and the models can be used to test different sampling and interpolation approaches commonly applied in precision agriculture and to better predict soil variables at not observed locations. Three strategies for composite sample collection were compared in our study. Point samples were taken 1.) along lines within homogenous... I. Sisák, A. Benő, K. Szabó, M. Kocsis, J. Abonyi |
9. Machine Monitoring As a Smartfarming Concept ToolCurrent development trends are associated with the digitization of production processes and the interconnection of individual information layers from multiple sources into common databases, contexts and functionalities. In order to automatic data collection of machine operating data, the farm tractors were equipped with monitoring units ITineris for continuous collection and transmission of information from tractors CAN Bus. All data sets are completed with GPS location data. Acreage... M. Kroulik, V. Brant, P. Zabransky, J. Chyba, V. Krcek, M. Skerikova |
10. Wheat Biomass Estimation Using Visible Aerial Images and Artificial Neural NetworkIn this study, visible RGB-based vegetation indices (VIs) from UAV high spatial resolution (1.9 cm) remote sensing images were used for modeling shoot biomass of two Brazilian wheat varieties (TBIO Toruk and BRS Parrudo). The approach consists of a combination of Artificial Neural Network (ANN) with several Vegetation Indices to model the measured crop biomass at different growth stages. Several vegetation indices were implemented: NGRDI (Normalized Green-Red Difference Index), CIVE (Color Index... M.R. De souza, T.D. Bertani, A. Parraga, C. Bredemeier, C. Trentin, D. Doering, A. Susin, M. Negreiros |
11. Variety Effects on Cotton Yield Monitor CalibrationWhile modern grain yield monitors are able to harvest variety and hybrid trials without imposing bias, cotton yield monitors are affected by varietal properties. With planters capable of site-specific planting of multiple varieties, it is essential to better understand cotton yield monitor calibration. Large-plot field experiments were conducted with two southeast Missouri cotton producers to compare yield monitor-estimated weights and observed weights in replicated variety trials. Two replications... E. Vories, A. Jones, G. Stevens, C. Meeks |
12. Precision Irrigation Management Through Conjunctive Use of Treated Wastewater and Groundwater in OmanAgriculture under arid environment is always become a challenge due to water scarcity and salinity problems. With average rainfall of 100 mm, agriculture in Oman is limited due to the arid climate and limited arable lands. More than 50 percent of the arable lands are located in the 300 km northern coastal belt of Al-Batinah region. In addition, country is facing severe problem of sea water intrusion into the groundwater aquifers due to undisciplined excessive groundwater (GW) abstraction... H. Jayasuriya, A. Al-busaidi, M. Ahmed |
13. Rapid Acquisition of Site Specific Lime Requirement with Mid-Infrared SpectroscopyIn Germany, the lime requirement of arable topsoils is derived from the organic matter content, clay content, and pH(CaCl2). For this purpose, it is common practice to determine the lime requirement of a field size up to three hectares from only one composite soil sample, whereby site heterogeneity is regularly not taken into account. To consider site heterogeneity, a measurement technique is required which allows a rapid and high resolution data acquisition. Mid-infrared... M. Leenen, S. Pätzold, T. Heggemann, G. Welp |
14. Modulated On-farm Response Surface Experiments with Image-based High Throughput Techniques for Evidence-based Precision AgronomyAgronomic research is vital to determining optimum inputs for crops to perform profitably at a local scale. However, the small-plot experiment validity is often uncertain due to on-farm variations. Furthermore, the likelihood of conducting a fully randomized trial at a local farm is low given various practical and technical challenges. We propose a new methodology with many inputs to allow for a response surface that fits the yield response to the input levels with higher accuracy to make on-farm... A.U. Attanayake, E.U. Johnson, H.U. Duddu, S.U. Shirtliffe |
15. Predicting Below and Above Ground Peanut Biomass and Maturity Using Multi-target RegressionPeanut growth and maturity prediction can help farmers and breeding programs improving crop management. Remote sensing images collected by satellites and drones make possible and accurate crop monitoring. Today, empirical relations between crop biomass and spectral reflectance could be used for prediction of single variables such as aboveground crop biomass, pod weight (PW), or peanut maturity. Robust algorithms such as multioutput regression (MTR) implemented through multioutput random forest... M.F. Oliveira, F.M. Carneiro, M. Thurmond, M.D. Del val, L.P. Oliveira, B. Ortiz, A. Sanz-saez, D. Tedesco |
16. Cherry Yield Forecast: Harvest Prediction for Individual Sweet Cherry TreesDigitalization continues to transform the agricultural sector as a whole and also affects specific niches like horticulture. Particularly in fruit and wine production, the focus is on the application of sensor systems and data analysis aiming at automated detection of drought stress or pests in vineyards or orchards. As part of the “For5G” project, we are developing an end-to-end methodology for the creation of digital twins of fruit trees, with a strong focus... A. Gilson, L. Meyer, A. Killer, F. Keil, O. Scholz, D. Kittemann, P. Noack, P. Pietrzyk, C. Paglia |
17. Use of Crop and Drought Spectral Indices to Support Harvest Decisions of Peanut Fields in AlabamaHarvest efficiency expressed in quantity and quality of peanut fields could increase if farmers are provided with tools to support harvest decisions. Peanut farmers still rely on a visual and empiric method to assess the right time of peanut maturity but this method does not account for within-field variability of crop growth and maturity. The integration of spectral vegetation indices to assess drought, soil moisture, and crop growth to predict peanut maturity can help farmers strengthen decisions... M.F. Oliveira, B.V. Ortiz, E. Hanyabui, J.B. Costa souza, A. Sanz-saez, S. Luns hatum de almeida , C. Pilcon, G. Vellidis |