Proceedings
Authors
| Filter results25 paper(s) found. |
|---|
1. Spatial-temporal Management Zones For Biomass MoistureBiomass handling operations (harvesting, raking, collection, and transportation) are critical operations within the agricultural production system since they constitute the first link in the biomass supply chain, a fact of substantial importance considering the increasingly involvement of biomass in bio-refinery and bio-energy procedures. Nevertheless, the inherent uncertainty, imposed by the interaction between environmental, biological, and machinery factors, makes the available scheduling... S. Fountas, D. Bochtis, C. Sorensen, O. Green, R. J, T. Bartzanas |
2. Stable Isotope N-15 as Precision Technique to Investigate Elemental Sulfur Effects on Fertilizer Nitrogen Use Efficiency of Corn Grown in Calcareous Sandy Soils... A.A. Soaud, .M. Rahman, F.H. Al darwish |
3. Evaluating Spectral Measures Derived From Airborne Multispectral Imagery for Detecting Cotton Root RotCotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is one of the most destructive plant diseases occurring... C. Yang, G.N. Odvody, C.J. Fernandez, J.A. Landivar, R.L. Nichols |
4. GIS Mapping of Soil Compaction and Moisture Distribution for Precision Tillage and Irrigation ManagementSoil compaction is one of the forms of physical change of soil structure which has positive and negative effects, in agriculture considered to make soil degradation. The undisciplined use of heavy load traffic or machinery in modern agriculture causes substantial soil compaction, counteracted by soil tillage that loosens the soil. Higher soil bulk densities affect resistance to root penetration, soil pore volume and permeability to air, and thus, finally the pore space habitable... H.P. Jayasuriya, M. Al-wardy, S. Al-adawi, K. Al-hinai |
5. X-Ray Computed Tomography For State Of The Art Plant And Root AnalysisDuring the last years, the formerly in medical applications established technique of X-ray computed tomography (CT) is used for non-destructive material analysis as well. Adapting this technique for the visualization and analysis of growth processes of plants above and underneath the soil enables new possibilities in the so called smart agriculture. Using State-of-the-art CT systems the computed 3D volume datasets allows the visualization and virtual analysis of hidden structures like roots... S. Reisinger, N. Uhlmann, R. Hanke, S. Gerth |
6. Site-Specific Variability Of Grape Composition And Wine QualityPrecision Viticulture (PV) is the application of site-specific tools to delineate management zones in vineyards for either targeting inputs or harvesting blocks according to grape maturity status. For the creation of management zones, soil properties, topography, canopy characteristics and grape yield are commonly measured during the growing season. The majority of PV studies in winegrapes have focused on the relation of soil and vine-related spatial data with grape composition... S. Fountas, Y. Kotseridis, A. Balafoutis, E. Anastasiou, S. Koundouras, S. Kallithraka, M. Kyraleou |
7. Field Tests and Improvement of Sensor and Control Interface Modules with Improved Compatibility for GreenhousesNumber of greenhouses has been increased in many countries to control the cultivation conditions and improve crop yield and quality. Recently, various sensors and control devices, and also wireless communication tools have been adopted for efficient monitoring and control of the greenhouse environments. However, there have been farmers’ demands for improved compatibility among the sensors and control devices. In the study, sensor and control interface modules with improved compatibility... K. Han, S. Chung |
8. EZZone - An Online Tool for Delineating Management ZonesManagement zones are a pillar of Precision Agriculture research. Spatial variability is apparent in all fields, and assessing this variability through measurement devices can lead to better management decisions. The use of Geographic Information Systems for agricultural management is common, especially with management zones. Although many algorithms have been produced in research settings, no online software for management zone delineation exists. This research used a common... G. Vellidis, C. Lowrance, S. Fountas, V. Liakos |
9. FOODIE Data Model for Precision AgricultureThe agriculture sector is a unique sector due to its strategic importance for both citizens (consumers) and economy (regional and global), which ideally should make the whole sector a network of interacting organizations. The FOODIE project aims at building an open and interoperable agricultural specialized platform hub on the cloud for the management of spatial and non-spatial data relevant for farming production. The FOODIE service platform deals with including their thematic, spatial, and temporal... K. Charvat, T. Reznik, K. Charvat jr., V. Lukas, S. Horakova, M. Kepka |
10. Quo Vadis Precision FarmingThe agriculture sector is a unique sector due to its strategic importance for both citizens and economy which, ideally, should make the whole sector a network of interacting organizations. There is an increasing tension, the like of which is not experienced in any other sector, between the requirements to assure full safety and keep costs under control, but also assure the long-term strategic interests of Europe and worldwide. In that sense, agricultural production influences, and is influenced... K. Charvat, T. Reznik, V. Lukas, K. Charvat jr., S. Horakova, M. Splichal, M. Kepka |
11. Developing UAV Image Acquisition System and Processing Steps for Quantitative Use of the Data in Precision AgricultureMapping natural variability of crops and land is first step of the management cycle in terms of crop production. Several methods have been developed and engaged for data recording and analyzing that generate prescription maps such as yield monitoring, soil mapping, remote sensing etc. Although conventional remote sensing by capturing images via satellites has been very popular tool to monitor the earth surface, it has several drawbacks such as orbital period, unattended capture, investment cost.... A. Tekin, M. Fornale |
12. Real-Time Fruit Detection Using Deep Neural NetworksProximal imaging using tractor-mounted cameras is a simple and cost-effective method to acquire large quantities of data in orchards and vineyards. It can be used for the monitoring of vegetation and for the management of field operations such as the guidance of smart spraying systems for instance. One of the most prolific research subjects in arboriculture is fruit detection during the growing season. Estimations of fruit-load can be used for early yield assessments and for the monitoring of... B. Keresztes, J. Da costa, D. Randriamanga, C. Germain, F. Abdelghafour |
13. Corn Nitrogen Fertilizer Recommendation Models Based on Soil Hydrologic Groups Aid in Predicting Economically Optimal Nitrogen RatesNitrogen (N) fertilizer recommendations that match corn (Zea mays L.) N needs maximize grower profits and minimize water quality consequences. However, spatial and temporal variability makes determining future N requirements difficult. Studies have shown no single soil or weather measurement is consistently increases accuracy, especially when applied over a regional scale, in predicting economically optimal N rate (EONR). Basing site N response on soil hydrological group could help account for... G.M. Bean, N.R. Kitchen, J.J. Camberato, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.E. Sawyer, P.C. Scharf |
14. Modifying Agro-Economic Models to Predict Effects of Spatially Varying Nitrogen on Wheat Yields for a Farm in Western AustraliaAgricultural research in broadacre farming in Western Australia has a strong history, resulting in a significant public resource of knowledge about biophysical processes affecting crop performance. However, translation of this knowledge into improved on-farm decision making remains a challenge to the industry. Online and mobile decision support tools to assist tactical farm management decisions are not widely adopted, for reasons including: (1) they take too much time and training to learn; and... F.H. Evans, J. Andrew, C. Scanlan, S. Cook |
15. Improving Corn Nitrogen Rate Recommendations Through Tool FusionImproving corn (Zea maysL,) nitrogen (N) fertilizer rate recommendation tools can improve farmer’s profits and help mitigate N pollution. One way to improve N recommendation methods is to not rely on a single tool, but to employ two or more tools. Thiscould be thoughtof as “tool fusion”.The objective of this analysis was to improve N management by combining N recommendation tools used for guiding rates for an in-seasonN application. This evaluation was... C.J. Ransom, N.R. Kitchen, J.J. Camberato, P.R. Carter, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J. Shanahan, J.E. Sawyer |
16. Levels of Inclusion of Crambe Meal (Crambe Abyssinica Hochst) in Sheep Diet on the Balance of Nitrogen and Ureic Nitrogen in the Blood SerumCrambe meal, which is a co-product of biodiesel production, is a potential substitute for conventional protein sources in ruminant diets. The objective of this study was to evaluate the effect of the substitution of crude protein of the concentrate by crude protein of crambe meal with increasing levels (0, 25, 50, and 75%) on nitrogen balance and blood plasma urea nitrogen concentration in sheep. Four male sheep, rumen fistulated, were placed in metabolic crates and distributed in a 4 x 4 Latin... K.K. De azevedo, D.M. Figueiredo, M.G. De sousa, G.M. Dallago, R.R. Silveira, L.D. Da silva, L.N. Rennó, R.A. Santos |
17. Calculating the Water Deficit of Apple Orchard by Means of Spatially Resolved ApproachIn semi-humid climate, spatially resolved analysis of water deficit was carried out in apple orchard (Malus x domestica 'Pinova'). The meteorological data were recorded daily by a weather station. The apparent soil electrical conductivity (ECa) was measured at field capacity, and twenty soil samples in 30 cm were gathered for texture, bulk density, and gravimetric soil water content analyses. Furthermore, ten trees were defoliated in different ECa regions in order to estimate the leaf... N. Tsoulias, D. Paraforos, N. Brandes, S. Fountas, M. Zude-sasse |
18. Map Whiteboard As Collaboration Tool for Smart Farming Advisory ServicesPrecision agriculture, a branch of smart farming, holds great promise for modernization of European agriculture both in terms of environmental sustainability and economic outlook. The vast data archives made available through Copernicus and related infrastructures, combined with a low entry threshold into the domain of AI-technologies has made it possible, if not outright easy, to make meaningful predictions that divides individual agricultural fields into zones where variable rates... K. Charvat, R. Berzins, R. Bergheim, F. Zadrazil, J. Macura, D. Langovskis, H. Snevajs, H. Kubickova, S. Horakova, K. Charvat jr. |
19. Fruit Fly Electronic Monitoring SystemInsects are a constant threat to agriculture, especially the cultivation of various types of fruits such as apples, pears, guava, etc. In this sense, it is worth mentioning the Anastrepha genus flies (known as fruit fly), responsible for billionaire losses in the fruit growing sector around the world, due to the severity of their attack on orchards. In Brazil, this type of pests has been controlled in most product areas by spraying insecticides, which due to the need for prior knowledge regarding... C.L. Bazzi, F.V. Silva, L. Gebler, E.G. Souza, K. Schenatto, R. Sobjak, R.S. Dos santos, A.M. Hachisuca, F. Franz |
20. Yield Mapping in Fruit FarmingDue to the importance of increasing the quantity and quality of world agricultural production, the use of technologies to assist in production processes is essential. Despite this, a timid adoption by precision agriculture (PA) technologies is verified by the Brazilian fruit producers, even though it is one of the segments that had been stood out in recent years in the country's economy. In the PA context, yield maps are rich sources of information, especially by species harvested through... C.L. Bazzi, M.R. Martins, L. Gebler, E.G. Souza, K. Schenatto, R. Sobjak, A. . Hachisuca, F. Franz |
21. Developing Empirical Method to Estimate Phosphorous in Potato Plants Using Spectroscopy-based ApproachApplication of non-destructive sensors opens a promising opportunity to provide efficient information on nutrient contents based on leaf or canopy reflectance in different crops. In potatoes, nutrient levels are estimated by conducting chemical tests for the petioles. In thinking of deploying sensors for potato nutrient estimation, it is necessary to study the spectrum based on petiole chemical testing rather than leaf chemical testing. Thus, this study aimed to investigate whether there is a... R. Abukmeil, A. Almallahi |
22. Soil Moisture Variability on Golf Course Fairways Across the United States: an Opportunity for Water Conservation with Precision IrrigationFairways account for an average of 11.3 irrigated hectares on each of the 15,000+ golf courses in the US. Annual median water use per hectare on fairways is between ~2,800,000 and 14,000,000 liters, depending on the region. Conventional fairway irrigation relies on visual observation of the turfgrass, followed by secondary considerations of short-term weather forecasts, which oftentimes lead to “blanket” applications to the entire area. The concept of precision irrigation is a strategy... C. Straw, C. Bolton, J. Young, R. Hejl, J. Friell, E. Watkins |
23. AgDataBox-IoT - Managing IoT Data and Devices on Precision AgricultureThe increasing global population has resulted in a substantial demand for nourishment, which has prompted the agricultural sector to investigate ways to improve efficiency. Precision agriculture (PA) uses advanced technologies such as the Internet of Things (IoT) and sensor networks to collect and analyze field information. Although the advantages are numerous, the available data storage, management, and analysis resources are limited. Therefore, creating and providing a user-friendly web application... C.L. Bazzi, W.K. Oliveira, R. Sobjak, K. Schenatto, E. Souza, A. Hachisuca, F. Franz |
24. Evaluating the Potential of In-season Spatial Prediction of Corn Yield and Responses to Nitrogen by Combining Crop Growth Modeling, Satellite Remote Sensing and Machine LearningNitrogen (N) is a critical yield-limiting factor for corn (Zea mays L.). However, over-application of N fertilizers is a common problem in the US Midwest, leading to many environmental problems. It is crucial to develop efficient precision N management (PNM) strategies to improve corn N management. Different PNM strategies have been developed using proximal and remote sensing, crop growth modeling and machine learning. These strategies have both advantages and disadvantages. There is... X. Zhen, Y. Miao, K. Mizuta, S. Folle, J. Lu, R.P. Negrini, G. Feng, Y. Huang |
25. Optimizing Vineyard Crop Protection: an In-depth Study of Spraying Drone Operational ParametersIn modern agriculture, the precise and efficient application of agrochemicals is essential to ensure crop health and increase productivity while minimizing adverse environmental impacts. While traditional spraying methods have long been the cornerstone of crop protection, the introduction of unmanned aerial vehicles (UAVs), commonly known as drones), has led to a revolutionary era in agriculture. UAVs offer novel opportunities to improve agricultural practices by providing precision, efficiency,... V. Psiroukis, S. Fountas, H. Uyar, A. Balafoutis, A. Kasimati |