Proceedings
Authors
| Filter results8 paper(s) found. |
|---|
1. Development Of A System For Site-specific Nematicide Placement In CottonNematode distribution varies significantly in cotton fields. Population density throughout a field is highly correlated to soil texture. Field-wide application of a uniform nematicide rate results in the chemical being applied to areas without nematodes or where nematode densities are below an economic threshold, or the application of sub-effective levels in areas with high nematode densities. The investigators have developed a “Site- Specific Nematicide Placement”... A. Khalilian, W. Henderson, J. Mueller, T. Kirkpatrick, S. Monfort, C. Overstreet |
2. Active Sensor Performance Dependence to Measuring Height, Light Intensity and Device TemperatureFor land use management, agriculture, and crop management spectral remote sensing is widely used. Ground-based sensing is particularly advantageous allowing to directly link on-site spectral information with agronomic algorithms. Sensors are nowadays most frequently used in site-specific oriented applications of fertilizers, but similarly site-specific applications of growth regulators, herbicides and pesticides become more often adopted. Generally little is known about the effects of... B. Mistele, U. Schmidhalter, S. Kipp |
3. Site-Specific Variability Of Grape Composition And Wine QualityPrecision Viticulture (PV) is the application of site-specific tools to delineate management zones in vineyards for either targeting inputs or harvesting blocks according to grape maturity status. For the creation of management zones, soil properties, topography, canopy characteristics and grape yield are commonly measured during the growing season. The majority of PV studies in winegrapes have focused on the relation of soil and vine-related spatial data with grape composition... S. Fountas, Y. Kotseridis, A. Balafoutis, E. Anastasiou, S. Koundouras, S. Kallithraka, M. Kyraleou |
4. Data-Driven Agricultural Machinery Activity Anomaly Detection and ClassificationIn modern agriculture, machinery has become the one of the necessities in providing safe, effective and economical farming operations and logistics. In a typical farming operation, different machines perform different tasks, and sometimes are used together for collaborative work. In such cases, different machines are associated with representative activity patterns, for example, in a harvest scenario, combines move through a field following regular swaths while grain carts follow irregular paths... Y. Wang, A. Balmos, J. Krogmeier, D. Buckmaster |
5. Use Cases for Real Time Data in AgricultureAgricultural data of many types (yield, weather, soil moisture, field operations, topography, etc.) comes in varied geospatial aggregation levels and time increments. For much of this data, consumption and utilization is not time sensitive. For other data elements, time is of the essence. We hypothesize that better quality data (for those later analyses) will also follow from real-time presentation and application of data for it is during the time that data is being collected that errors can be... J. Krogmeier, D. Buckmaster, A. Ault, Y. Wang, Y. Zhang, A. Layton, S. Noel, A. Balmos |
6. Private Simple Databases for Digital Records of Contextual Events and ActivitiesFarmers’ commitment and ability to keep good records varies tremendously. Records and notes are often cryptic, misplaced, or damaged and for many, remain unused. If such information were recorded digitally and stored in the cloud, we immediately solve some access and consistency issues and make this data FAIR (findable, accessible, interoperable, reusable). More importantly, interoperable digital formats can also enable mining for insights and analysis... M.S. Basir, J. Krogmeier, Y. Zhang, D. Buckmaster |
7. Design of an Autonomous Ag Platform Capable of Field Scale Data Collection in Support of Artificial IntelligenceThe Pivot+ Array is intended to serve as an innovative, multi-user research platform dedicated to the autonomous monitoring, analysis, and manipulation of crops and inputs at the plant scale, covering extensive areas. It will effectively address many constraints that have historically limited large-scale agricultural sensor and robotic research. This achievement will be made possible by augmenting the well-established center pivot technology, known for its autonomy, with robust power infrastructure,... S. Jha, J. Krogmeier, D. Buckmaster, D.J. Love, R.H. Grant, M. Crawford, C. Brinton, C. Wang, D. Cappelleri, A. Balmos |
8. Enabling Field-level Connectivity in Rural Digital Agriculture with Cloud-based LoRaWANThe widespread adoption of next-generation digital agriculture technologies in rural areas faces a critical challenge in the form of inadequate field-level connectivity. Traditional approaches to connecting people fall short in providing cost-effective solutions for many remote agricultural locations, exacerbating the digital divide. Current cellular networks, including 5G with millimeter wave technology, are urban-centric and struggle to meet the evolving digital agricultural needs, presenting... Y. Zhang, J. Bailey, A. Balmos, F.A. Castiblanco rubio, J. Krogmeier, D. Buckmaster, D. Love, J. Zhang, M. Allen |