Proceedings

Find matching any: Reset
Lu, Y
Laboski, C.A
Leese, S
Leksono, E
Add filter to result:
Authors
Leksono, E
Adamchuk, V
Ji, W
Leclerc, M
Leksono, E
Adamchuk, V
Whalen, J
Buelvas, R
Taylor, J
Shahar, Y
James, P
Blacker, C
Leese, S
Sanderson, R
Kavanagh, R
Li, D
Miao, Y
Fernández, .G
Kitchen, N.R
Ransom, C.
Bean, G.M
Sawyer, .E
Camberato, J.J
Carter, .R
Ferguson, R.B
Franzen, D.W
Franzen, D.W
Franzen, D.W
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Shanahan, J.F
Wang, Y
Lu, Y
Morris, D
Benjamin, M
Lavagnino, M
McIntyre, J
Xu, J
Lu, Y
Xu, J
Lu, Y
Topics
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Geospatial Data
ISPA Community: Nitrogen
Farm Animals Health and Welfare Monitoring
Robotics and Automation with Row and Horticultural Crops
International Symposium on Robotics and Automation
Type
Oral
Poster
Year
2018
2022
2024
Home » Authors » Results

Authors

Filter results7 paper(s) found.

1. Development of a Soil ECa Inversion Algorithm for Topsoil Depth Characterization

Electromagnetic induction (EMI) proximal soil sensor systems can deliver rapid information about soil. One such example is the DUALEM-21S (Dualem, Inc. Milton, Ontario, Canada). EMI sensors measure soil apparent electrical conductivity (ECa) corresponding to different depth of investigation depending on the instrument configuration. The interpretation of the ECa measurements is not straightforward and it is often site-specific. Inversion is required to explore specific depths. This inversion process... E. Leksono, V. Adamchuk, W. Ji, M. Leclerc

2. Development of a Manual Soil Sensing System for Measuring Multiple Chemical Soil Properties in the Field

Variable Rate Fertilizer Application (VRA) requires the input of soil chemical data. One of the preferred methods for analyzing soil chemical properties in the field is by using Ion Selective Electrodes (ISEs). To accommodate portability in soil measurements, a manual soil sampling system was developed. Nitrate, Phosphate and pH ISEs were integrated to provide a general outlook on the condition of essential soil nutrients. These ISEs were placed on a modified hand-held soil sampler equipped... E. Leksono, V. Adamchuk, J. Whalen, R. Buelvas

3. Experiences in the Development of Commercial Web-Based Data Engines to Support UK Growers Within an Industry-Academic Partnership

The lifecycle of Precision Agriculture data begins the moment that the measurement is taken, after which it may pass through each multiple data processes until finally arriving as an output employed back in the production system. This flow can be hindered by the fact that many farm datasets have different spatial resolutions. This makes the process to aggregate or analyse multiple Precision Agriculture layers arduous and time consuming.  Precision Decisions Ltd located in Yorkshire,... J. Taylor, Y. Shahar, P. James, C. Blacker, S. Leese, R. Sanderson, R. Kavanagh

4. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US Midwest

Effective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan

5. 3D Computer Vision with a Spatial-temporal Neural Network for Lameness Detection of Sows

The lameness of sows is one of the biggest concerns for swine producers, which can lead to considerable economic losses due to reduced productivity and welfare. There is a real need for early detection of lameness in sows to enable timely intervention and minimize loss. Currently, lame detection relies on visual observation and locomotion scoring of sows, which is subjective, labor-intensive, and difficult to conduct for large groups of animals within a short time. This study presents 3D computer... Y. Wang, Y. Lu, D. Morris, M. Benjamin, M. Lavagnino, J. Mcintyre

6. Automated Detection and Length Estimation of Green Asparagus Towards Selective Harvesting

Green asparagus is an important vegetable crop in the United States (U.S.). Harvesting the crop is notoriously labor-intensive, accounting for over 50% of production costs. There is an urgent need to develop harvesting automation technology for the U.S. asparagus industry to remain sustainable and competitive. Despite previous research and developments on mechanical asparagus harvesting, no practically viable products are available because of their low harvest selectivity and significant yield... J. Xu, Y. Lu

7. Development of a Multispectral Vision-based Automated Sweetpotato Grading System

Quality evaluation and grading of sweetpotatoes is a manual operation that requires significant labor input. Machine vision technology offers a promising solution for automated sweetpotato grading and sorting. Although color imaging is widely used for quality evaluation of various horticultural commodities, a multispectral vision technique that acquires color and near-infrared (NIR) images simultaneously is a potentially more effective modality for fruit grading, especially for defects, while... J. Xu, Y. Lu