Proceedings
Authors
| Filter results8 paper(s) found. |
|---|
1. sUAVS Technology For Better Monitoring Crop Status For Winter CanolaThe small-unmanned aircraft vehicles (sUAVS) are currently gaining more popularity in agriculture with uses including identification of weeds and crop production issues, diagnosing nutrient deficiencies, detection of chemical drift, scouting for pests, identification of biotic or abiotic stresses, and prediction of biomass and yield. Research information on the use of sUAVS have been published and conducted in crops such as rice, wheat, and corn, but the development of... I.A. Ciampitti, K. Shroyer, V. Prasad, A. Sharda, M.J. Stamm, H. Wang, K. Price, D. Mangus |
2. Development of a Multiband Sensor for Citrus Black Spot Disease DetectionCitrus black spot (CBS), or Guignardia citricarpa, is known as the most destroying citrus fungal disease worldwide. CBS causes yield loss as a result of early fruit drop, and it leaves severely blemished and unmarketable fruit. While leaves usually remain symptomless, CBS generates various forms of lesions on citrus fruits including hard spot, cracked spot, and virulent spot. CBS lesions often appear on maturing fruit, starting two months before maturity. Warm temperature and sunlight exposure... A. Pourreza, W. Lee, J. Lu, P. Roberts |
3. Utilizing Space-based Technology for Cotton Irrigation SchedulingAccurate soil moisture content measurements are vital to precision irrigation management. Electromagnetic sensors such as capacitance and time domain reflectometry have been widely used for measuring soil moisture content for decades. However, to estimate average soil moisture content over a large area, a number of ground-based in-situ sensors would need to be installed, which would be expensive and labor intensive. Remote sensing using the microwave spectrum (such as GPS signals) has been used... A. Khalilian, X. Qiao, J.O. Payero, J.M. Maja, C.V. Privette, Y.J. Han |
4. Real-Time Control of Spray Drop ApplicationElectrostatic application of spray drops provides unique opportunities to precisely control the application of pesticides due to the additional electrostatic force on the spray drops, in addition to the normally seen forces of aerodynamic drag, gravity, and inertia. In this work, we develop a computational model to predict the spray drop trajectories. The model is validated through experiments with high speed photography of spray drop trajectories, and quantification of which trajectories lead... S. Post, M. Jermy, P. Gaynor, N. Kabaliuk, A. Werner |
5. soil2data: Concept for a Mobile Field Laboratory for Nutrient AnalysisKnowledge of the small-scale nutrient status of arable land is an important basis for optimizing fertilizer use in crop production. A mobile field laboratory opens up the possibility of carrying out soil sampling and nutrient analysis directly on the field. In addition to the benefits of fast data availability and the avoidance of soil material transport to the laboratory, it provides a future foundation for advanced application options, e.g. a high sampling density, sampling of small sub-fields... V. Tsukor, C. Scholz, W. Nietfeld, T. Heinrich, T. Mosler , F. Lorenz, E. Najdenko, A. Möller, D. Mentrup, A. Ruckelshausen, S. Hinck |
6. Monitoring Soybean Growth and Yield Due to Topographic Variation Using UAV-Based Remote SensingRemote sensing has been used as an important tool in precision agriculture. With the development of unmanned aerial vehicle (UAV) technology, collection of high-resolution site-specific field data becomes promising. Field topography affects spatial variation in soil organic carbon, nitrogen and water content, which ultimately affect crop performance. To improve crop production and reduce inputs to the field, it is critical to collect site-specific information in a real-time manner and at a large... J. Zhou, K.A. Sudduth, A. Feng |
7. Assessment of Goss Wilt Disease Severity Using Machine Learning Techniques Coupled with UAV ImageryGoss Wilt has become a common disease in corn fields in North Dakota. It has been one of the most yield-limiting diseases, causing losses of up to 50%. The current method to identify the disease is through visual inspection of the field, which is inefficient, and can be subjective, with misleading results, due to evaluator fatigue. Therefore, developing a reliable, accurate, and automated tool for assessing the severity of Goss's Wilt disease has become a top priority. The use of unmanned... A. Das, P. Flores, Z. Zhang , A. Friskop, J. Mathew |
8. Computer Vision by UAVs for Estimate Soybean Population Across Different Physiological Growth Stages and Sowing SpeedsSoybean (Glycine max (Linnaeus) Merrill) production in the United States plays a crucial role in agriculture, occupying a considerable amount of cultivated land. However, the costs associated with soybean production have shown a notable increase in recent years, with seed-related expenses accounting for a significant proportion of the total. This increase in costs is attributed to a number of factors, including the introduction of patented and protected genetic traits, as well as inflationary... F. Pereira de souza, L. Shiratsuchi, H. Tao, M. Acconcia dias, M. Barbosa, T. Deri setiyono, S. campos |