Proceedings
Authors
| Filter results9 paper(s) found. |
|---|
1. Integrated Approach to Site-specific Soil Fertility ManagementIn precision agriculture the lack of affordable methods for mapping relevant soil attributes is a fundamental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor |
2. Survey Shows Specialty and Commodity Crop Retailers Use Precision Agriculture DifferentlyThe 2021 CropLife-Purdue Survey of precision agricultural practices by US agricultural input dealers serving the American grain and oilseed sector shows that most of them use GPS guidance and related technologies like sprayer boom control, most provide variable rate fertilizer services, and the majority say that fertilizer decisions are influenced by grower data. In contrast, dealers serving horticultural and specialty crop farms indicate comparatively modest adoption of many precision agriculture... B.J. Erickson, J. Lowenberg-deboer |
3. The ISO Strategic Advisory Group for Smart Farming: a Multi-pronged Opportunity for Greater Global InteroperabilityAgriculture is becoming increasingly complex and producers must secure their profitability, sustainability, and freedom to operate under a progressively more challenging set of constraints such as climate change, regulatory pressure, changes in consumer preferences, increasing cost of inputs, and commodity price volatility. We have not, however, yet reached the level of data interoperability required for a truly "smart" farming that can tackle the aforementioned problems... R. Ferreyra, J. Lehmann |
4. Profitability of Regenerative Cropping with Autonomous Machines: an Ex-ante Assessment of a British Crop-livestock FarmFarmers, agroecological innovators and research have suggested mixed cropping as a way to promote soil health. Mixing areas of different crops in the same field is another form of precision agriculture's spatial and temporal management. The simplest form of mixed cropping is strip cropping. In conventional mechanized farming use of mixed cropping practices (i.e., strip cropping, pixel cropping) is limited by labour availability, rising wage rates, and management complexity. Regenerative agriculture... A. Al amin, J. Lowenberg-deboer, K.F. Franklin, E. Dickin, J. Monaghan, K. Behrendt |
5. Global Adoption of Precision Agriculture: an Update on Trends and Emerging TechnologiesThe adoption of precision agriculture (PA) has been mixed. Some technologies (e.g., Global Navigation Satellite System (GNSS) guidance) have been adopted rapidly worldwide wherever there is mechanized agriculture. Adoption of some of the original PA technologies introduced in the 1990s has been modest almost everywhere (e.g., variable rate fertilizer). New and more advanced technologies based on robotics, uncrewed aerial vehicles (UAVs), machine vision, co-robotic automation, and artificial intelligence... J. Mcfadden, B. Erickson, J. Lowenberg-deboer, G. Milics |
6. A Multi-objective Optimisation Analysis of Virtual Fencing in Precision GrazingVirtual fencing is a precision livestock farming tool consisting of invisible boundaries created via Global Navigation Satellite Systems (GNSS) and managed remotely and in real time by app-based technology. Grazing livestock are equipped with battery-powered collars capable of delivering audio or vibration cues and possibly electric shocks when approaching or crossing an invisible boundary. Virtual fencing makes precision grazing possible without the need for physical fences. This technology originated... E. Maritan, K. Behrendt, J. Lowenberg-deboer, S. Morgan, M.S. Rutter |
7. Data-driven Agriculture and Sustainable Farming: Friends or Foes?Sustainability in our food and fiber agriculture systems is inherently knowledge intensive. It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience. Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer |
8. Exploring the Use of a Model-based Nitrogen Recommendation Tool and Vegetation Indices for In-season Corn Nitrogen Management in AlabamaEfficient nitrogen (N) management is critical for sustainable agriculture. Crop N needs and uptake changes within a field and it is annually influenced by weather conditions. Hence, site-specific in-season N application strategies are important to achieve optimum corn yield while minimizing negative impacts on the environment. This study evaluates the Adapt-N tool for in-season variable rate N application at two farmers’ fields in Alabama. The Adapt-N tool integrates soil and crop-based... P.R. Duarte, B.V. Ortiz, E. Abban-baidoo, E. Francisco, M.F. De oliveira |
9. Participatory Irrigation Extension Programs to Increasing Adoption of Best Irrigation StrategiesFarmers in Alabama, Tennessee, and other US southeastern states lack experience in irrigation water management and adoption of the state-of-the-art technologies and practices to increase irrigation water use efficiency. Several federal and state-funded projects are being implemented to demonstrate and train farmers and consultants on irrigation scheduling strategies and variable rate irritation. Half a dozen on-farm demonstration sites are selected every year to evaluate, demonstrate, and train... L. Nunes, E. Francisco, R. Prasad, B.V. Ortiz, E. Abban-baidoo , M. Worosz, M. Robinette , C. O'connor, A. Gamble |