Proceedings

Find matching any: Reset
Werkmeister, B.K
Hehar, G
Heil, K
Harris, G
Hillyer, C
Hatfield, J.L
Wang, Y
Wang, D.R
Heggemann, T
Woolley, E
Warner, D
Weltzien, C
Huender, L
Wood, B.A
Add filter to result:
Authors
Ellingson, J.L
Holub, B.K
Morgan, S.E
Werkmeister, B.K
Yule, I.J
Wood, B.A
Cushnahan, M.Z
Yule, I.J
Wood, B.A
Wilson, R
Gebbers, R
Dworak, V
Mahns, B
Weltzien, C
Büchele, D
Gornushkin, I
Mailwald, M
Ostermann, M
Rühlmann, M
Schmid, T
Maiwald, M
Sumpf, B
Rühlmann, J
Bourouah, M
Scheithauer, H
Heil, K
Heggemann, T
Leenen, M
Pätzold, S
Welp, G
Chudy, T
Mizgirev, A
Wagner, P
Beitz, T
Kumke, M
Riebe, D
Kersebaum, C
Wallor, E
Ferreyra, R
Applegate, D.B
Berger, A.W
Berne, D.T
Craker, B.E
Daggett, D.G
Gowler, A
Bullock, R.J
Haringx, S.C
Hillyer, C
Howatt, T
Nef, B.K
Rhea, S.T
Russo, J.M
Nieman, S.T
Sanders, P
Wilson, J.A
Wilson, J.W
Tevis, J.W
Stelford, M.W
Shearouse, T.W
Schultz, E.D
Reddy, L
Hatfield, J.L
Prueger, J.H
Hatfield, J.L
Warner, D
Lacroix, R
Vasseur, E
Lefebvre, D
Wang, Y
Balmos, A
Krogmeier, J
Buckmaster, D
Leenen, M
Pätzold, S
Heggemann, T
Welp, G
Krogmeier, J
Buckmaster, D
Ault, A
Wang, Y
Zhang, Y
Layton, A
Noel, S
Balmos, A
Porter, W
Daughtry, D
Harris, G
Noland, R
Snider, J
Virk, S
Turner, I
Kerry, R
Jensen, R
Woolley, E
Hansen, N
Hopkins, B
Virk, S
Colley, T
Kamerer, C
Harris, G
Beasley, D
Heil, K
Pathak, H
Warren, C.J
Buckmaster, D
Wang, D.R
Huender, L
Everett, M
Asgedom, H
Hehar, G
Willness, C
Anderson, W
Duddu, H
Mooleki, P
Schoenau, J
Khakbazan, M
Lemke, R
Derdall, E
Shang, J
Liu, K
Sulik, J
Karppinen, E
Mbakwe, I
Topics
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Profitability, Sustainability and Adoption
Big Data Mining & Statistical Issues in Precision Agriculture
Precision Nutrient Management
Standards & Data Stewardship
Vegetative Indices in Crop Production
Remote Sensing for Nitrogen Management
Farm Animals Health and Welfare Monitoring
Big Data, Data Mining and Deep Learning
Site-Specific Nutrient, Lime and Seed Management
Profitability and Success Stories in Precision Agriculture
Applications of Unmanned Aerial Systems
Drainage Optimization and Variable Rate Irrigation
Site-Specific Nutrient, Lime and Seed Management
Decision Support Systems
In-Season Nitrogen Management
Weather and Models for Precision Agriculture
Type
Oral
Poster
Year
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results18 paper(s) found.

1. Development Of An Enterprise Level Precision Agriculture System

Development of an Enterprise Level Precision Agriculture System   James Ellingson, Chih Lai University of St. Thomas, School of Engineering 2115 Summit Ave, St. Paul, MN USA elli4729@stthomas.edu;   Abstract – In this paper, a plan for the development of an Enterprise Level system for Precision Agriculture (PA) is described. The basic... J.L. Ellingson, B.K. Holub, S.E. Morgan, B.K. Werkmeister

2. Precision Agriculture As Bricolage: Understanding The Site Specific Farmer

There is an immediate paradox apparent in precision farming because it applies all of it ‘s precision and recognition of variability to the land, yet operates under the assumption of idealism and normative notions when it comes to considering the farmer.  Precision Agriculture (PA) systems have often considered the farmer as an optimiser of profit, or maximiser of efficiency, and therefore replaceable with mathematical constructs, so that although at the centre of decision... I.J. Yule, B.A. Wood

3. Surplus Science and a Non-linear Model for the Development of Precision Agriculture Technology

The advent of ‘big data technologies’ such as hyperspectral imaging means that Precision Agriculture (PA) developers now have access to superabundant and highly  heterogeneous data.  The authors explore the limitations of the classic science model in this situation and propose a new non-linear process that is not based on the premise of controlled data scarcity. The study followed a science team tasked with developing highly advanced hyperspectral techniques for a ‘low... M.Z. Cushnahan, I.J. Yule, B.A. Wood, R. Wilson

4. Integrated Approach to Site-specific Soil Fertility Management

In precision agriculture the lack of affordable methods for mapping relevant soil attributes is a funda­mental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor

5. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway identified... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

6. Seasonal Patterns of Vegetative Indices Over Cropping Systems

Remote sensing of reflectance in the visible and near-infrared portions of the spectrum has been used for agronomic applications for a number of years. The combination of different wavelengths into vegetative indices have proven useful for a variety of applications that range from biomass, leaf area, leaf chlorophyll, yield, crop residue, and crop damage. To help refine our understanding of vegetative indices studies were conducted on corn (Zea mays L.), soybean (Glycine max (L.) Merr.), wheat... J.L. Hatfield, J.H. Prueger

7. Spatial Patterns of Nitrogen Response Within Corn Production Fields

Corn (Zea mays L.) yield response to nitrogen (N) application is critical to being able to develop management practices that reduce N application or improve N use efficiency. Nitrogen rate studies have been conducted within small plots; however, there have been few field scale evaluations. This study was designed to evaluate N response across 14 corn fields in central Iowa using different rates of N applied in strips across fields. These fields ranged in size from 15 to 130 ha with N... J.L. Hatfield

8. Detection and Monitoring the Risk Level for Lameness and Lesions in Dairy Herds by Alternative Machine-Learning Algorithms

Machine-learning methods may play an increasing role in the development of precision agriculture tools to provide predictive insights in dairy farming operations and to routinely monitor the status of dairy cows. In the present study, we explored the use of a machine-learning approach to detect and monitor the welfare status of dairy herds in terms of lameness and lesions based on pre-recorded farm-based records. Animal-based measurements such as lameness and lesions are time-consuming, expensive... D. Warner, R. Lacroix, E. Vasseur, D. Lefebvre

9. Data-Driven Agricultural Machinery Activity Anomaly Detection and Classification

In modern agriculture, machinery has become the one of the necessities in providing safe, effective and economical farming operations and logistics. In a typical farming operation, different machines perform different tasks, and sometimes are used together for collaborative work. In such cases, different machines are associated with representative activity patterns, for example, in a harvest scenario, combines move through a field following regular swaths while grain carts follow irregular paths... Y. Wang, A. Balmos, J. Krogmeier, D. Buckmaster

10. Rapid Acquisition of Site Specific Lime Requirement with Mid-Infrared Spectroscopy

In Germany, the lime requirement of arable topsoils is derived from the organic matter content, clay content, and pH(CaCl2). For this purpose, it is common practice to determine the lime requirement of a field size up to three hectares from only one composite soil sample, whereby site heterogeneity is regularly not taken into account. To consider site heterogeneity, a measurement technique is required which allows a rapid and high resolution data acquisition. Mid-infrared... M. Leenen, S. Pätzold, T. Heggemann, G. Welp

11. Use Cases for Real Time Data in Agriculture

Agricultural data of many types (yield, weather, soil moisture, field operations, topography, etc.) comes in varied geospatial aggregation levels and time increments. For much of this data, consumption and utilization is not time sensitive. For other data elements, time is of the essence. We hypothesize that better quality data (for those later analyses) will also follow from real-time presentation and application of data for it is during the time that data is being collected that errors can be... J. Krogmeier, D. Buckmaster, A. Ault, Y. Wang, Y. Zhang, A. Layton, S. Noel, A. Balmos

12. Correlating Plant Nitrogen Status in Cotton with UAV Based Multispectral Imagery

Cotton is an indeterminate crop; therefore, fertility management has a major impact on the growth pattern and subsequent yield. Remote sensing has become a promising method of assessing in-season cotton N status in recent years with the adoption of reliable low-cost unmanned aerial vehicles (UAVs), high-resolution sensors and availability of advanced image processing software into the precision agriculture field. This study was conducted on a UGA Tifton campus farm located in Tifton, GA. The main... W. Porter, D. Daughtry, G. Harris, R. Noland, J. Snider, S. Virk

13. Investigation of Automated Analysis of Snowmelt from Time-series Sentinel 2 Imagery to Inform Spatial Patterns of Spring Soil Moisture in the American Mountain West

Variable rate irrigation of crops is a promising approach for saving water whilst maintaining crop yields in the semi-arid American Mountain West – much of which is currently experiencing a mega drought. The first step in determining irrigation zones involves characterizing the patterns of spatial variation in soil moisture and determining if these are relatively stable temporally in relation to topographic features and soil texture. Characterizing variable rate irrigation zones is usually... I. Turner, R. Kerry, R. Jensen, E. Woolley, N. Hansen, B. Hopkins

14. Improving Site-specific Nutrient Management in the Southeastern US: Variable-rate Fertilization Based on Yield Goal by Management Zone

Site-specific nutrient management is a critical aspect of row crop production, especially when aiming to achieve improved yields in the highly variable fields in the Southeastern United States. Variable-rate (VR) fertilizer application is a common practice to implement site-specific nutrient management and relies heavily on the use of precision soil sampling methods (grid or zone) to obtain accurate information on spatial nutrient variability within the fields. Most fields in the southeastern... S. Virk, T. Colley, C. Kamerer, G. Harris, D. Beasley

15. Detailed Derivation of Spatial Soil Attributes Using Soil Sensor Data, Terrain Analysis and Soil Maps with Supervised Classification

Detailed knowledge of the spatial distribution of soils is critical for improved management and modeling in agriculture and forestry. However, information from existing soil maps is often not accurate enough and soil units are too large. In the current study, we used intensively collected information from soil profile analyses at the Scheyern site and used this as training data to map soil relationships on land in Dürnast with long-term fertilization experiments (BonaRes). Both... K. Heil

16. Advancing Adaptive Agricultural Strategies: Unraveling Impacts of Climate Change and Soils on Corn Productivity Using APSIM

With unprecedented challenges to achieve sustainable crop productivity under climate change and dynamic soil conditions, adaptive management strategies are required for optimizing cropping systems. Using sensors, cropping systems can be continuously monitored and the data collected by them can be analyzed for making informed adaptive management decisions to enhance productivity and environmental sustainability. But sensors can only tell the past and decisions bring implications into the future.... H. Pathak, C.J. Warren, D. Buckmaster, D.R. Wang

17. Dimensionality Reduction and Similarity Metrics for Predicting Crop Yields in Sparse Data Microclimates

This study explores and develops new methodologies for predicting agricultural outcomes, such as crop yields, in microclimates characterized by sparse meteorological data. Specifically, it focuses on reducing the dimensionality in time series data as a preprocessing step to generate simpler and more explainable forecast models. Dimensionality reduction helps in managing large data sets by simplifying the information into more manageable forms without significant loss of information. We explore... L. Huender, M. Everett

18. Response of Canola and Wheat to Application of Enhanced Efficiency Nitrogen Fertilizers on Contrasting Management Zones

Investment on nitrogen (N) fertilizers is a major cost of growers, and variable rate (VR) application of N fertilizers could help optimize its usage. In the growing season of 2023, field experiments were conducted at four sites (i.e., Watrous – Saskatchewan SK and two fields in the vicinity of Strathmore, Alberta AB, Canada). The main objectives were to (i) determine performance of Enhanced Efficiency N Fertilizers - EENF (i.e., Coated urea, urea with double inhibitors - DI, urea mixed with... H. Asgedom, G. Hehar, C. Willness, W. Anderson, H. Duddu, P. Mooleki, J. Schoenau, M. Khakbazan, R. Lemke, E. derdall, J. Shang, K. Liu, J. Sulik, E. Karppinen, I. Mbakwe