Proceedings
Authors
| Filter results14 paper(s) found. |
|---|
1. GNSS Tracking Of Livestock: Towards Variable Fertilizer Strategies For The Grazing IndustryThis study reveals the potential for GPS tracking in the grazing industry. By monitoring the locations and movement of livestock, times of peak grazing activity can be identified and these can in turn produce maps of preferred grazing areas, and by examining residency times provide an indication of spatial variability in grazing pressure. A comparison of grazing preference can be made to similarly inferred camping areas to understand the potential redistribution of nutrients within a paddock.... M.G. Trotter, D.W. Lamb, G.N. Hinch, C.N. Guppy |
2. Ultra Low Level Aircraft (ULLA) As A Platform For Active Optical Sensing Of Crop BiomassCrop producers requiring crop biomass maps to support timely application of in-season fertilisers, pesticides or growth regulators rely on either on-ground active sensors or airborne/satellite imagery. Active crop sensing (for example using Yara N-SensorTM, GreenseekerTM or CropcircleTM) can only be used when the crop is accessible by person or vehicle, and extensive, high-resolution coverage is time consuming. On the other hand, airborne or satellite imaging is... D.W. Lamb, M.G. Trotter, D. Schneider |
3. Matching Nitrogen To Plant Available Water For Malting Barley On Highly Constrained Vertosol SoilCrop yield monitoring, high resolution aerial imagery and electromagnetic induction (EMI) soil sensing are three widely used techniques in precision agriculture (PA). Yield maps provide an indication of the crop’s response to a particular management regime in light of spatially-variable constraints. Aerial imagery provides timely and accurate information about photosynthetically-active biomass during crop growth and EMI indicates spatial variability in soil texture, salinity and/or... B. Sauer, C.N. Guppy, M.G. Trotter, D.W. Lamb, J.A. Delgado |
4. Precision Livestock Management: An Example Of Pasture Monitoring In Eastern Australian Pastures Using Proximal And Remote Sensing ToolsPasture monitoring Australian rangelands by Remote Sensing G.E.Donald. CSIRO Livestock Industries, Locked Bag 1, Armidale NSW, 2350 Australia A series of spatial models and datasets were jointly developed to estimate pasture biomass as feed on offer (FOO®) and pasture growth rate (PGR®) in the south-west... G.E. Donald, M.G. Trotter, D.W. Lamb, G. Levow, H.M. Van es |
5. Cotton Precision Farming Adoption In The Southern United States: Findings From A 2009 SurveyThe objectives of this study were 1) to determine the status of precision farming technology adoption by cotton producers in 12 states and 2) to evaluate changes in cotton precision farming technology adoption between 2000 and 2008. A mail survey of cotton producers located in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas and Virginia was conducted in February and March of 2009 to establish the use of precision farming technologies... M. Velandia, D.F. Mooney, R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, S.L. Larkin, M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, C. Wang, E. Segarra, J.M. Reeves |
6. Adoption And Perceived Usefulness Of Precision Soil Sampling Information In Cotton ProductionSoil testing assists farmers in identifying nutrient variability to optimize input placement and timing. Anecdotal evidence suggests that soil test information has a useful life of 3–4 years. However, perceived usefulness may depend on a variety of factors, including field variability, farmer experience and education, farm size, Extension, and factors indirectly related to farming. In 2009, a survey of cotton farmers in 12 Southeastern states collected information... D.C. Harper, D.M. Lambert, B.C. English, J.A. Larson, R.K. Roberts, M. Velandia, D.F. Mooney, S.L. Larkin |
7. Spatial Apparent Electrical Conductivity (ECa), Soil Moisture and Water Use Efficiency in Vertosol SoilsProducing high resolution maps of water use efficiency (crop yield per unit of water consumption; WUE) for precision crop management is limited by our ability to readily produce maps of soil moisture... J.N. Stanley, D.A. Schneider, D.W. Lamb |
8. Airborne Active Optical Sensors (AOS) For Photosynthetically-Active Biomass Sensing: Current Status And Future OpportunitiesThe first published deployment of an active optical reflectance sensor (AOS) in a low-flying aircraft in 2009 catalyzed numerous developments in both sensor development and sensor platform integration. Integral to these sensors is a modulated light source composed of high power LED technology that emits high radiance polychromatic light. The sensor easily mounts to agricultural aircraft and can sense agricultural landscapes at altitudes from a few meters to altitudes exceeding 40 meters while... K.H. Holland, D.W. Lamb |
9. Winter Wheat Genotype Effect on Canopy Reflectance: Implications for Using NDVI for In-season Nitrogen Topdressing RecommendationsActive optical sensors (AOSs) measure crop reflectance at specific wavelengths and calculate vegetation indices (VIs) that are used to prescribe variable N fertilization. Visual observations of winter wheat (Triticum aestivum L.) plant greenness and density suggest that VI values may be genotype specific. Some sensor systems use correction coefficients to eliminate the effect of genotype on VI values. This study was conducted to assess the effects of winter wheat cultivars and growing conditions... O.S. Walsh, S.M. Samborski, M. Stępień, D. Gozdowski, D.W. Lamb, E.S. gacek, T. Drzazga |
10. Ear Deployed Accelerometer Behaviour Detection in SheepAn animal’s behaviour can be a clear indicator of their physiological and physical state. Therefore as resting, eating, walking and ruminating are the predominant daily activities of ruminant animals, monitoring these behaviours could provide valuable information for management decisions and individual animal health status. Traditional animal monitoring methods have relied on human labor to visually observe animals. Accelerometer technology offers the possibility of remotely monitoring animal... J.D. Barwick, M. Trotter, D.W. Lamb, R. Dobos, M. Welch |
11. Decision Support from On-field Precision ExperimentsEmpirically driven adaptive management in large-scale commodity crop production has become possible with spatially controlled application and sub-field scale crop monitoring technology. Site-specific experimentation is fundamental to an agroecosystem adaptive management (AAM) framework that results in information for growers to make informed decisions about their practices. Crop production and quality response data from combine harvester mounted sensors and internet available remote sensing data... B.D. Maxwell, P.D. Hegedus, S.D. Loewen, H.D. Duff, J.W. Sheppard, A.D. Peerlinck, G.L. Morales, A. Bekkerman |
12. Estimation of Cotton Biomass Using Unmanned Aerial Systems and Satellite-based Remote SensingSatellite and unmanned aerial system (UAS) images are effective in monitoring crop growth at various spatial, temporal, and spectral scales. The objective of the study was to estimate cotton biomass at different growth stages using vegetation indices (VIs) derived from UAS and satellite images. This research was conducted in a cotton field in Hale County, Texas, in 2021. Data collected include 54 plant samples at different locations for three dates of the growing season. Multispectral images from... O.I. Adedeji, B.P. Ghimire, H. Gu, R. Karn, Z. Lin, W. Guo |
13. Enhancing PA Adoption Through Value ConnectionsDespite an increase in breadth of precision agriculture over time, and the attendant elements of digital agriculture that either support PA or integrates the outputs of PA, the pace of adoption of digital agriculture in our farming systems remains slow. In assessing impediments to adoption of digital agriculture, much work to date has focused on the value proposition as considered by individual producers or value chain actors. At this level, adoption remains constrained by perceptions of... D.W. Lamb, M.T. Schaefer |
14. AI-based Fruit Harvesting Using a Robotic ArmFruit harvesting stands as a pivotal and delicate process within the agricultural industry, demanding precision and efficiency to ensure both crop quality and overall productivity. Historically reliant on manual labor, this labor-intensive endeavor has taken a significant leap forward with the advent of autonomous jointed robots and Artificial Intelligence (AI). Our project aims to usher in a new era in fruit harvesting, leveraging advanced technology to perform this essential task autonomously... H. Kulhandjian, N. Amely, M. Kulhandjian |