Proceedings

Find matching any: Reset
In-Season Nitrogen Management
Drone Spraying
Education and Training in Precision Agriculture
Modeling and Geo-statistics
Remote Sensing for Nitrogen Management
Decision Support Systems
Add filter to result:
Authors
Abney, M
Adedeji, O
Adedeji, O
Admasu, W.A
Al-Shammari, D
Amaral, L.R
Balafoutis, A
Balboa, G
Basso, B
Bedwell, E
Bennur, P
Bishop, T
Bodson, B
Boote, K
Bremer, E
Brorsen, B.W
Bui, T
Burlai, T
Burns, J
Byers, C
Byers, C
Byers, C
Byers, C
Cambouris, A
Cammarano, D
Cerri, D.G
Cesario Pereira Pinto, J
Chen, J
Chen, Z
Chou, T
Ciampitti, I
Correndo, A
Costa, O.P
Coulter, J.A
Custer, S
Davis, G
Destain, J
Destain, M
Dong, R
Dos Reis, A.A
Duchemin, M
Dumont, B
Elshafie, A
Emmons, A
Fageria, N.K
Felipe dos Santos, A
Ferrandis Vallterra, S
Ferraz, C
Figueiredo, G.K
Filippi, P
Flint, E.A
Fountain, J
Fountain, J
Fountas, S
France, W
Franco, H.C
Freitas, R.G
Fulton, J.P
Fulton, J.P
Fulton, J.P
Garg, A
Ge, Y
Ghimire, B
Ghimire, B
Ghimire, D
Greer, K
Gunzenhauser, R
Guo, W
Guo, W
Gupta, S
Hand, L
Hartschuh, J
Hatfield, J.L
Hatfield, J.L
Hawkins, E
Heil, K
Hernandez, C
Hoogenboom, G
Hopkins, B.G
Hyrien, M
Igwe, K.E
Inácio, F.D
Islam, M
Jhala, A
Jia, M
Joalland, S
Kamel, N.N
Karn, R
Karn, R
Kasimati, A
Kelley, J
Kemerait, R.C
Kemerait, R.C
Kemerait, R.C
Khalid, M.B
Khosla, R
Kichler, J
Kitchen, N.R
Klopfenstein, A
Knezevic, S
Kodaira, M
Kuehner, K
Kukal, S
Kukal, S
Lacasa, J
Lacerda, L
Lacerda, L
Lacerda, L
Lacerda, L.N
Lamker, D
Lamparelli, R.A
Langrock, M
Larbi, P.A
Leemans, V
Leininger, A
Li, D
Li, Q
Li, Y
Lima, J.P
Lovejoy, K
Lu, J
Luck, J.D
Magalhães, P.S
Magalhaes Cisdeli, P
Magalhães, P.S
Maharjan, B
Maktabi, S
Maktabi, S
Mandal, D
Massey, R
McArtor, B
McAvoy, T
McDonald, T.P
McPherson, T
Meena, R
Meena, R.K
Meena, R.K
Miao, Y
Miao, Y
Miao, Y
Miao, Y
Mieno, T
Mizuta, K
Mizuta, K
Mommen, D
Morales, A.C
Mueller, N
Mulla, D.J
Mullen, R.W
Neils, W
Nielsen, R.L
Nocera Santiago, G.N
Ohaba, M
Oliveira, R
Onyekwelu, I
Orlando Costa Barboza, T
Ortiz, B.V
Otto, R
Pate, G
Peduzzi, A
Pellegrini, P
Pereira, F.R
Pereira, F.R
Pereira, J.C
Phillips, S.B
Pilcon, C
Pilcon, C
Pitla, S
Poncet, A
Poncet, A.M
Psiroukis, V
Puntel, L
Puntel, L.A
Purcell, L
Quinn, D.J
Rains, G
Ransom, C.J
Rattalino, J
Raun, W.R
Raun, W.R
Raun, W.R
Ritchie, G
Roberts, D.C
Roberts, T
Rodrigues Jr., F.A
Romier, C
Rosen, C
Sanches, G.M
Santos, A.B
Sapkota, A
Schepters, J.S
Schmidt, J.P
Sharaf, S
Sharda, V
Shearer, S
Shi, Y
Shibusawa, S
Silva, J.E
Silva, W
Snider, J
Solie, J.B
Solie, J.B
Sripada, R.P
Steele, K
Sysskind, M
Sysskind, M
TISSEYRE, B
Taylor, R.K
Thomas, A
Thomason, W.E
Thompson, L
Uyar, H
Vancutsem, F
Vellidis, G
Vellidis, G
Vellidis, G
Verdi, A.K
Verhoff, K
Virk, S
Virk, S
Virk, S
Virk, S
Vitali, G.-
Vitantonio, L
Wagner, P
Wakahara, S
Wakahara, S
Wang, N
Wang, X
Weckler, P
Yeh, M
Yost, M
Yousef, D.A
Yu, Z
Zainal Abidin, M.B
Zhang, J
Zhang, Y
Zhao, X
Ziadi, N
Topics
Decision Support Systems
In-Season Nitrogen Management
Drone Spraying
Modeling and Geo-statistics
Remote Sensing for Nitrogen Management
Education and Training in Precision Agriculture
Type
Oral
Poster
Year
2024
2022
2012
2008
Home » Topics » Results

Topics

Filter results51 paper(s) found.

1. Using Soil Attributes To Model Sugar Cane Quality Parameters

The crop area of sugar cane production in Brazil has increased substantially in the last few years, especially to meet the global bioethanol demand. Such increasing production should take place not only in new sugar cane crop areas but mainly with the goal of improving the quality of raw material like sugar content (Pol). Hence, models that can describe the behaviour of the quality parameters of sugar cane may be important to understand the effects of the soil attributes on those parameters. ... F.A. Rodrigues jr., P.S. Magalhães, H.C. Franco, D.G. Cerri

2. Statistical Procedure to Compare Farming Procedures with the Observation of Spatial Trends and Correlations in On-Farm Research

Modern management and machines have been introduced on a demonstration farm in Ganhe (China). This has led to new methods of cultivation with effects on yields, cost structure and thus also on the economic success of the farm. These effects should be tested with the help of an on-farm trial. The cultivation methods differed in the equipment used, plant protection and fertilisation strategies. In contrast to classical field trials, normal working practice farm machinery and fields are used in ... P. Wagner, M. Langrock

3. Assessing the Potential of an Algorithm Based On Mean Climatic Data to Predict Wheat Yield

In crop yield prediction, the unobserved future weather remains the key point of predictions. Since weather forecasts are limited in time, a large amount of information may come from the analysis of past weather data. Mean data over the past years and stochastically generated data are two possible ways to compensate the lack of future data. This research aims to demonstrate that it is possible to p... F. Vancutsem, V. Leemans, S. Ferrandis vallterra, B. Bodson, J. Destain, M. Destain, B. Dumont

4. Transient Water Flow Model in a Soil-Plant System for Subsurface Precision Irrigation

The spatial variability of plant-water characteristic in the soil is still unclear. This limits the attempt to model the soil-plant-atmosphere system with this factor. Understanding the non-steady water flow along the soil-plant component is essential to understand their spatial variabili... M.B. Zainal abidin, S. Shibusawa, M. Ohaba, Q. Li, M. Kodaira, M.B. Khalid

5. A New Approach to Yield Map Creation

    One of the barriers to using yield maps as a data layer in precision agriculture activities is that the maps being generated to day are not very accurate in representing what really happened in field.  Numerous data errors in the way the data is collected, poor calibration habits on the part of opera... C. Romier, M. Hyrien, D. Lamker

6. Evaluation of PRS(TM) Probe Technology and Model for Variable Rate Fertilizer Application in Hummocky Fields in Saskatchewan

... K. Greer, J. Burns, E. Bremer

7. A High-Reliability Database-Supported Modular Precision Irrigation System

Title of Abstract:          A High-Reliability Database-Supported Modular Precision Irrigation System Authors of Abstract:     N. Kamel1, S. Sharaf1, A. El-Shafei... S. Sharaf, A. Elshafie, N.N. Kamel, D.A. Yousef

8. Maximizing Agriculture Equipment Capacity Using Precision Agriculture Technologies

Guidance systems are one of the primary Precision Agriculture technologies adopted by US farmers. While most practitioners establish their initial AB lines for fields based on previous management patterns, a potential exists in conducting analyses to establish AB lines or traffic patterns which maximize field capacity. The objective of this study was t... A.M. Poncet, T.P. Mcdonald, G. Pate, B. Tisseyre, J.P. Fulton

9. I-SALUS: New Web Based Spatial Systems for Simulating Crop Yield and Environmental Impact

  SALUS (System Approach to Land Use Sustainability) model is designed to simulate the impact of agronomic management on yield and environmental impact. SALUS model has new approaches and algorithms for simulating soil carbon, nitrogen, phosphorous, tillage, soil water balance and yield components. In the past, the use of the crop model was not easy for genera... T. Chou, M. Yeh, J. Chen, B. Basso

10. Nitrogen Management in Lowland Rice

Rice is staple diet for more than fifty percent of the world population and nitrogen (N) deficiency is one of the major yields limiting constraints in most of the rice producing soils around the world. The lowland rice N recovery efficiency is <50% of applied fertilizers in most agro-ecological regions. The low N efficiency is associated with losses caused by leaching, volatilization, surface runoff, and denitrification. Hence, improving N use efficiency is crucial for higher yields, low c... N.K. Fageria, A.B. Santos

11. Prediction of Nitrogen Needs with Nitrogen-rich Strips and Ramped Nitrogen Strips

Both nitrogen rich strips and ramped nitrogen strips have been used to estimate topdress nitrogen needs for winter wheat based on in-season optical reflectance data. The ramped strip system places a series of small plots in each field with increasing levels of nitrogen to determine the application rate at which predicted yield response to nitrogen reaches a plateau. The nitrogen-rich strip system uses a nitrogen fertilizer optimization algorithm based on optical reflectance measures from the ... D.C. Roberts, B.W. Brorsen, W.R. Raun, J.B. Solie

12. Spatial Patterns of Nitrogen Response Within Corn Production Fields

Corn (Zea mays L.) yield response to nitrogen (N) application is critical to being able to develop management practices that reduce N application or improve N use efficiency. Nitrogen rate studies have been conducted within small plots; however, there have been few field scale evaluations. This study was designed to evaluate N response across 14 corn fields in central Iowa using different rates of N applied in strips across fields. These fields ranged in size from 15 to 130 ha with N... J.L. Hatfield

13. Developing Nitrogen Algorithms for Corn Production Using Optical Sensors

Remote sensing for nitrogen management in cereal crops has been an intensive research area due to environmental concerns and economic realities of today’s agronomic system. In the search for improved nitrogen rate decisions, what approach is most often taken and are those approaches justified through scientific investigation? The objective of this presentation is to educate decision makers on how these algorithms are developed and evaluate how well they work in the field on a small-plot... R.W. Mullen, S.B. Phillips, W.R. Raun, W.E. Thomason

14. Variability in Observed and Sensor Based Estimated Optimum N Rates in Corn

Recent research showed that active sensors such as Crop Circle can be used to estimate in-season N requirements for corn. The objective of this research was to identify sources of variability in the observed and Crop Circle-estimated optimum N rates. Field experiments were conducted at two locations for a total of five sites during the 2007 growing season using a randomized complete block design with increasing N rates applied at V6-V8 (NV6) as the treatment factor. Field sites were selected ... R.P. Sripada, J.P. Schmidt

15. Controller Performance Criteria for Sensor Based Variable Rate Application

Sensor based variable rate application of crop inputs provides unique challenges for traditional rate controllers when compared to map based applications. The controller set point is typically changing every second whereas with a map based systems the set point changes much less frequently. As applied data files for a sensor based variable rate nitrogen applicator were obtained from a wheat field in north central Oklahoma. These data were analyzed to determine the magnitude and frequency of r... R.K. Taylor, P. Bennur, J.B. Solie, N. Wang, P. Weckler, W.R. Raun

16. Soil and Crop Factors to Site-specific Nitrogen Management on Sugarcane Fields

Nitrogen (N) is one of the most widely used fertilizers in crops and the most harmful to the environment. The increase fertilizers consumption, mainly N sources (one of the most widely fertilizer used in sugarcane fields), is one of the main factors underlying the sustainability of the entire production process. Currently, N recommendations in sugarcane are based only on the expected yield. However, there is little agronomic support for nitrogen (N) recommendations based on expected yield, de... G.M. Sanches, R. Otto, F.R. Pereira

17. Spatial and Temporal Factors Impacting Incremental Corn Nitrogen Fertilier Use Efficiency

Current tools for making crop N fertilizer recommendations are primarily based on plot and field studies that relate the recommendation to the economic optional N rate (EONR).  Some tools rely entirely on localized EONR (e.g., MRTN). In recent years, tools have been developed or adapted to  account for within-field variation in crop N need or variable within season factors. Separately, attention continues to elevate for how N fertilizer recommendations might account for environmenta... N.R. Kitchen, C.J. Ransom, J.S. Schepters, J.L. Hatfield, R. Massey

18. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minne... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

19. Nitrogen Fertilization of Potato Using Management Zone in Prince Edward Island, Canada

Potato is sensible to nitrogen (N) and optimal N fertilization improve the tuber yield and its quality. Potato crop N response varies widely within fields. It is also well recognized that significant spatial and temporal variation in soil N availability occurs within crop fields. However, uniform application of N fertilizer is still the most common practice under potato production. Management zone (MZ) approach can help growers to achieve a part of this. The goal of the project is to compare ... A. Cambouris, M. Duchemin, N. Ziadi

20. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine Learning

Precision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li

21. Nitrogen Status Prediction on Pasture Fields Can Be Reached Using Visible Light UAV Data Combined with Sentinel-2 Imagery

Pasture fields under integrated crop-livestock system usually receive low or no nitrogen fertilization rates, since the expectation is that nitrogen demand will be provided by the soybean remaining straw cropped previously. However, keeping nitrogen at suitable levels in the entire field is the key to achieving sustainability in agricultural production systems. In this sense, remote sensing technologies play an essential role in nitrogen monitoring in pastures and crops. With the launch of th... F.R. Pereira, J.P. Lima, R.G. Freitas, A.A. Dos reis, L.R. Amaral, G.K. Figueiredo, R.A. Lamparelli, J.C. Pereira, P.S. Magalhães

22. Variable Rate Nitrogen Approach in a Potato-wheat-wheat Cropping System

Nitrogen application in agriculture is a vital process for optimal plant growth and yield outcomes. Different factors such as topography, soil properties, historical yield, and crop stress affect nitrogen (N) needs within a field. Applying variable N within a field could improve precision agriculture. Optimal N management is a system that involves applying a conservative variable base rate at or shortly after planting followed by in-season assessment and, if needed, variable rate application&... E.A. Flint, M. Yost, B.G. Hopkins

23. Evaluation of Nitrogen Recommendation Tools for Winter Wheat in Nebraska

Attaining both high yield and high nitrogen (N) use efficiency (NUE) simultaneously remains a current research challenge in crop production. Digital ag technologies for site-specific N management have been demonstrated to improve NUE. This is due to the ability of digital technologies to account for the spatial and temporal distribution of crop N demand and available soil N in the field which varies greatly according t... J. Cesario pereira pinto, L. Thompson, N. Mueller, T. Mieno, G. Balboa, L. Puntel

24. Nitrogen Placement Considerations for Maize Production in the Eastern US Cornbelt

Proper fertilizer placement is essential to optimize crop performance and amount of applied nitrogen (N) along with crop yield potential. There exists several practices currently used in both research within farming operations on how and when to apply N to maize (Zea mays L). Split applications of N in Ohio is popular with farmers and provides an economic benefit but more recently some farmers have been using mid- and late-season N fertilizer applications for their maize production.&... J.P. Fulton, E. Hawkins, S. Shearer, A. Klopfenstein, J. Hartschuh, S. Custer

25. In-season Nitrogen Management of Maize Based on Nitrogen Status and Lodging Risk Prediction

Development of effective precision nitrogen (N) management strategies is crucially important for food security and sustainable development. Lodging is one of the major constraints to increasing maize yield that can be induced by strong winds, and is also influenced by management practices, like N rate. When making in-season N application decisions, lodging risk should be considered to avoid yield loss. Little has been reported on in-season N management strategies that also incorporate lodging... R. Dong, Y. Miao, X. Wang

26. Assessment of Active Crop Canopy Sensor As a Tool for Optimal Nitrogen Management in Dryland Winter Wheat

Optimum nitrogen (N) fertilizer application is important for agronomic, economic, and environmental reasons. Among different N management tools, active crop canopy sensors are a recent and promising tool widely evaluated for use in corn but still under-evaluated for use in winter wheat. The objective of this study was to determine whether vegetation indices derived from in-season active crop canopy sensor data can be used to predict winter wheat grain yield and protein content and subsequentl... D. Ghimire

27. In-season Diagnosis of Winter Wheat Nitrogen Status Based on Rapidscan Sensor Using Machine Learning Coupled with Weather Data

Nitrogen nutrient index (NNI) is widely used as a good indicator to evaluate the N status of crops in precision farming. However, interannual variation in weather may affect vegetation indices from sensors used to estimate NNI and reduce the accuracy of N diagnostic models. Machine learning has been applied to precision N management with unique advantages in various variables analysis and processing. The objective of this study is to improve the N status diagnostic model for winter wheat by c... J. Lu, Z. Chen, Y. Miao, Y. Li, Y. Zhang, X. Zhao, M. Jia

28. Effect of Application Rate and Height on Spray Deposition and Efficacy of Fungicides Applied with a Spray Drone in Corn

Foliar application of fungicides is a key management strategy for corn growers in the United States to protect crop yield from diseases like southern corn rust (SCR), tar spot (TS), and northern corn leaf blight (NLB). Recently, the use of spray drones for fungicide applications have gained an interest among growers and consultants due to their potential as another application tool to ensure the timely application of fungicides. Currently, the information on optimal application parameters to&... C. Byers, S. Virk, R.C. Kemerait

29. A Flexible Software Architecture for General Precision Agriculture Decision Support Systems

Agricultural data management is a complex problem. Both the data and the needs of the users are diverse. Given the complexity of the problem, it's easy to ascertain that a single solution will not be able to meet the needs of all users. This paper presents a software architecture designed to be extensible as well as flexible enough to provide agricultural management tools for a wide variety of users. The solution is based on a microservice architecture, which allows for the creation of ne... W. Neils, D. Mommen

30. Spray Deposition and Efficacy of Pesticide Applications with Spray Drones in Row Crops in the Southeastern US

The use of spray drones for pesticide applications is expanding rapidly in agriculture, with one of the top uses currently being in the row crop production. Several research studies were undertaken in 2022 and 2023 to measure and assess spray deposition and efficacy of pesticides applied with spray drones in the major row crops (corn, cotton and peanuts) grown in the southeastern US. These studies also evaluated and compared the deposition and pesticide efficacy of spray drones with tradition... C. Byers, R. Meena, J. Kichler, R.C. Kemerait, L. Hand, S. Virk

31. Static and In-field Validation of Application Accuracy of Commercial Spray Drones at Varying Rates and Speeds

The emerging application of spray drones in agriculture for pesticide delivery has seen significant interest recently. Currently, various spray drone platforms with advanced capabilities such as variable-rate application and edge-spraying are commercially available; however, limited research and information is available regarding the application accuracy of these systems. Pesticide applications with spray drones in several research studies conducted at the University of Georgia in 2023 indica... S. Virk, R.K. Meena, C. Byers

32. Spray Deposition Characterization of Uniform and Variable-rate Applications with Spray Drones

The use of unmanned aerial application systems (also known as spray drones) has seen rapidly increasing interest in recent years due to their potential to allow for timely application of pesticides and being able to apply in areas inaccessible to ground application sprayers. Newer spray drone models’ have improved application systems such as rotary atomizers for creating spray droplets and capabilities such as variable-rate (VR) application for site-specific pesticide applications. An i... C. Byers, S. Virk, R.K. Meena, G. Rains

33. Field-level Zoning at Regional Scale Using Remote Sensing and GIS: Lessons Learned from the Desert Agriculture Region of Southern California

A decision support tool, SAMZ-Desert, utilizing GIS and remote sensing techniques, was created to delineate management zones (MZs) for a total of 6852 fields in California's Imperial County. Landsat-8 NDVI data from April 27, 2018, was employed for this purpose. Furthermore, 11 cloud-free images captured between 2018 and 2020 were statistically analyzed to assess within-field NDVI variability and the temporal stability of MZs at the regional level. Approximately 37% of the fields in the r... A.K. Verdi, A. Garg, A. Sapkota

34. Are Pulses Really More Variable Than Cereals? a Country-wide Analysis of Within-field Variability

In Australia, pulses are underutilised by growers relative to cereal crops. There is significant global interest in growing pulses to provide more plant protein, and they also provide a string of agronomic and environmental benefits, such as their ability to fix nitrogen, and provide a pest and disease break for cereal crops. Many studies attribute this underutilisation to pulses exhibiting greater within-field yield variability than cereals. However, this has never been comprehensively exami... P. Filippi, T. Bishop, D. Al-shammari, T. Mcpherson

35. Precision Irrigation Strategies for Climate-resilient Crop Production and Water Resource Management

Deficit irrigation management practices that best optimize the use of limited water resources without impacting crop yield are necessary to ensure the sustainability of agricultural production. This is particularly crucial in regions characterized by semi-arid climate, like Western Kansas, where the challenge of depleting water resources is worsened by the occurrence of extreme climate conditions. Therefore, a data-driven irrigation management strategy such as one developed based on crop evap... K.E. Igwe, I. Onyekwelu, V. Sharda

36. Detailed Derivation of Spatial Soil Attributes Using Soil Sensor Data, Terrain Analysis and Soil Maps with Supervised Classification

Detailed knowledge of the spatial distribution of soils is critical for improved management and modeling in agriculture and forestry. However, information from existing soil maps is often not accurate enough and soil units are too large. In the current study, we used intensively collected information from soil profile analyses at the Scheyern site and used this as training data to map soil relationships on land in Dürnast with long-term fertilization experiments (BonaRes). Both... K. Heil

37. Comparative Analysis of Spray Nozzles on Drones: Volumetric Distribution at Different Heights

Agricultural drones are emerging as a revolutionary tool in modern agriculture, aiming to enhance precision and efficiency in crop management. One of their main advantages is the ability to operate in adverse soil and canopy height conditions, making them a valuable instrument for the application of agrochemicals. In this context, the optimization of spraying systems plays a critical role, with the goal of ensuring the effective application of agrochemicals, aiming to maximize productivity an... A. Felipe dos santos, J.E. Silva, O.P. Costa, F.D. Inácio , R. Oliveira, W. Silva, L. Lacerda, T. Orlando costa barboza

38. Decision Support Tools for Developing Aflatoxin Risk Maps in Peanut Fields

Aspergillus flavus and Aspergillus parasiticus hereafter referred to jointly as A. flavus, are soil fungi that infect and contaminate preharvest and postharvest peanuts with the carcinogenic secondary metabolite aflatoxin. A. flavus can cause extensive economic losses to peanut growers and shellers by contaminating peanut kernels with aflatoxins. In the southeastern U.S., contamination from aflatoxin continues to be a major threat to the peanut industry and... G. Vellidis, M. Abney, T. Burlai, J. Fountain, R.C. Kemerait, S. Kukal, L. Lacerda, S. Maktabi, A. Peduzzi, C. Pilcon, M. Sysskind

39. A Decision-support Tool to Optimize Mid-season Corn Nitrogen Fertilizer Management from Red, Green, Blue SUAS Images

Corn receives more nitrogen (N) fertilizer per unit area than any other row crop and optimized soil fertility management is needed to help maximize farm profitability. In Arkansas, N fertilizer for corn is delivered in two- or three-split applications. Three-split applications may provide a better match to crop needs and contribute to minimizing yield loss from N deficiency. However, the total amounts are selected based on soil texture and yield goal without accounting for early-season losses... A. Poncet, T. Bui, W. France, T. Roberts, L. Purcell, J. Kelley

40. Deposition Characteristics of Different Style Spray Tips at Varying Speeds and Altitudes from an Unmanned Aerial System

The application of pesticides with a UAS has become a popular practice over the past few years within crop production. The ability to carry larger volumes of liquid i onboard, reduced costs, and simple operation has attributed to the increased popularity. Additionally, the increased number of fungicide applications in corn due to the tar spot disease has shown that the demand for aerial applications of all types has increased with UAS pesticide application technology providing the opportunity... A. Leininger, K. Verhoff, K. Lovejoy, A. Thomas, G. Davis, A. Emmons, J.P. Fulton

41. Coupling Macro-scale Variability in Soil and Micro-scale Variability in Crop Canopy for Delineation of Site-specific Management Grid

The efficient application of fertilizers via Site-Specific Management Units (SSMUs) or Management Zones (MZs) can significantly enhance crop productivity and nitrogen use efficiency. Conventional mathematical and data-driven clustering methods for MZ delineation, while prevalent, often lack precision in identifying productivity zones. This research introduces a knowledge-driven productivity zone to mitigate these limitations, offering a more precise and efficacious approach. The hyp... W.A. Admasu, D. Mandal, R. Khosla

42. Using Remote Sensing to Benchmark Crop Coefficient Curves of Sweet Corn Grown in the Southeastern United States

Irrigation is responsible for over 75% of global freshwater use, making it the largest consumer of the world’s freshwater resources. With freshwater scarcity increasing worldwide, increased efficient irrigation water use is necessary. Smart irrigation is described as ‘the linking of technology and fundamental knowledge of crop physiology to significantly increase irrigation water use efficiency'. Irrigation scheduling tools such as smartphone applications have become... E. Bedwell, L. Lacerda, T. Mcavoy, B.V. Ortiz, J. Snider, G. Vellidis, Z. Yu

43. AI Tools in Agri DSS Pipeline - the Case of Irrigated Sugarbeet

A general pipeline that can be associated to a DSS includes several steps. Data Collectionn includes Acquisition, extraction, and aggregation of data from previously identified and selected sources. Data Cleaning and preparation make data available for exploratory analysis that make them usable. Data Analysis is then applied to extract meaningful information e.g. by statistical and/or simulation models. Data are successively synthesized and visualized to make them clear to the decision-maker ... G.-. Vitali, C. Ferraz

44. Onboard Weed Identification and Application Test with Spraying Drone Systems

Commercial spraying drone systems nowadays have the ability to implement variable rate applications according to pre-loaded prescription maps. Efforts are needed to integrate sensing and computing technologies to realize on-the-go decision making such as those on the ground based spraying systems. Besides the understudied subject of drone spraying pattern and efficacy, challenges also exist in the decision making, control, and system integration with the limits on payload and flight endurance... Y. Shi, M. Islam, K. Steele, J.D. Luck, S. Pitla, Y. Ge, A. Jhala, S. Knezevic

45. Field Validation of Airblast Spray Advisor Decision Support Web App for Citrus Applications

Field conditions influencing the effectiveness of pesticide application in orchard and vineyard production systems are complex. As a result, growers and pesticide applicators grapple with how to make the right decisions for setting up the sprayer that will lead to the most efficient and effective outcomes. Airblast Spray Advisor, a decision support web app built on MATLAB was designed to assist with planning and evaluation of such applications when using airblast sprayers. It re... P.A. Larbi

46. Optimizing Vineyard Crop Protection: an In-depth Study of Spraying Drone Operational Parameters

In modern agriculture, the precise and efficient application of agrochemicals is essential to ensure crop health and increase productivity while minimizing adverse environmental impacts. While traditional spraying methods have long been the cornerstone of crop protection, the introduction of unmanned aerial vehicles (UAVs), commonly known as drones), has led to a revolutionary era in agriculture. UAVs offer novel opportunities to improve agricultural practices by providing precision, efficien... V. Psiroukis, S. Fountas, H. Uyar, A. Balafoutis, A. Kasimati

47. Integrated Data-driven Decision Support Systems

Site-specific and data-driven decision support systems in agriculture are evolving fast with the rapid advancements in cutting-edge technologies such as Agricultural Artificial Intelligence (AgAI) and big data integration. Data driven decision support systems have the potential to revolutionize various aspects of farming, from crop monitoring and precision management decisions to the way growers interact with complex technologies. The AgAI decision support-based systems excel at ana... L.A. Puntel, P. Pellegrini, S. Joalland , J. Rattalino, L. Vitantonio

48. Simulating Climate Change Impacts on Cotton Yield in the Texas High Plains

Crop yield prediction enables stakeholders to plan farming practices and marketing. Crop models can predict crop yield based on cropping system and practices, soil, and other environmental factors. These models are being used for decision support in agriculture in a variety of ways. Cultivar selection, water and nutrient input optimization, planting date selection, climate change analysis and yield prediction are some of the promising area of applications of the models in field level farm man... B. Ghimire, R. Karn, O. Adedeji, G. Ritchie, W. Guo

49. Predicting Within-field Cotton Yield Variability Using DSSAT for Decision Support in Precision Agriculture

The quantification of spatial and temporal variability of cotton (Gossypium hirsutum L.)  yield provides critical information for optimizing resources, especially water, in the Southern High Plains (SHP), Texas, with a diminishing water supply. The within-field yield variation is mostly influenced by the properties of soil and their interaction with water and nutrients. The objective of this study was to predict within-field cotton yield variability using a crop growth mode... B. Ghimire, R. Karn, O. Adedeji, W. Guo

50. From Scientific Literature to the End User: Democratizing Access to Data Products Through Interactive Applications

In recent years, the sustained advance in the creation of powerful programming libraries is allowing not only the creation of complex models with predictive capabilities but also revolutionizing visualization processes and the deployment of interactive applications. Some of these tools, such as Streamlit or Shiny frameworks in languages such as Python or R, allow us to create from simple applications with friendly interfaces to complex tools. These interactive digital decision dashboards allo... C. Hernandez, A. Correndo, J. Lacasa, P. Magalhaes cisdeli, G.N. Nocera santiago, I. Ciampitti

51. Predicting the Spatial Distribution of Aflatoxin Hotspots in Peanut Fields Using DSSAT CSM-CROPGRO-PEANUT-AFLATOXIN

Aflatoxin contamination in peanuts (Arachis hypogaea L.) is a persistent concern due to its detrimental effects on both profitability and public health. Several plant stress-inducing factors, including high soil temperatures and low soil moisture, have been associated with aflatoxin contamination levels. Understanding the correlation between stress-inducing factors and contamination levels is essential for implementing effective management strategies. This study uses the DSSAT CSM-CR... S. Maktabi, G. Vellidis, G. Hoogenboom, K. Boote, C. Pilcon, J. Fountain, M. Sysskind, S. Kukal