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Abstract. A multi-faceted whole farm planning model was developed to compare conventional 
and autonomous machinery for grain crop production.  Results suggested that autonomous 
machinery could be an economically viable alternative to conventional manned machinery if the 
establishment of intelligent controls was cost effective.  An increase in net returns of 22% over 
operating with conventional machinery was found.  This study also identified the break-even 
investment price for intelligent controls for the safe and reliable commercialization of autonomous 
machinery.  Results indicated that the break-even investment price was highly variable depending 
on the financial benefits resulting from the deployment of autonomous machinery and farm size.  
The maximum break-even investment price for intelligent, autonomous controls was nearly U.S. 
$500,000. 
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Introduction 
Over the years, the dominant trend in agricultural machinery has been toward the use of larger 
sizes of conventional equipment in crop production.   One of the primary reasons farmers desire 
larger equipment is to benefit from economies of size.  Specifically, farmers can become more 
economically competitive by substituting capital for labor, thereby reducing per hectare labor 
costs.  Additionally, larger equipment can mitigate the risks associated with untimely operations 
due to unfavorable weather conditions.  Other factors such as the need to compensate for the 
declining and seasonal availability of a skilled agricultural workforce or producers’ desire for more 
leisure time are also possible explanations for the trend to larger machines.  However, as the size 
of agricultural machines continues to increase, consequences that are detrimental to both the 
operator and environment arise.  For the operator, controlling large implements on irregular terrain 
and moving equipment between fields along narrow public thoroughfares is problematic at best.  
Furthermore, soil compaction seems to be largely ignored as ballasted mass increases in direct 
proportion to engine size.  Moreover, larger equipment leads to input metering and application 
errors with overlap and velocity variations across the implement width when turning.  Some 
researchers are concerned that producers may not be capable of achieving uniform application 
with increasing equipment size (Luck et al., 2011).  Autonomous machinery may offer the potential 
to reverse the deleterious trends of larger equipment while preserving the timeliness advantage.  
The replacement of large manned machines with smaller autonomous machinery represents a 
paradigm shift that may lead to significant changes in the structure of agriculture.  The implications 
of autonomous machinery could be profound and will most certainly encompass a variety of 
disciplines.  At the macroeconomic level, replacing human operators with advanced technology 
will undoubtedly influence labor markets.  Alternately, at the microeconomic level, issues 
pertaining to economies of size and scope, capital labor substitution, environmental quality, and 
rural development may be influenced by adopting autonomous machinery.  Aside from 
economics, the implementation of autonomous machinery could create new sociological 
dynamics by allowing more leisure and family time for the once constrained farm operators.  
Furthermore, by removing the operator from the tractor, farm safety (i.e., exposure to chemicals 
and machinery related accidents such as tractor overturn) could improve.  Autonomous machinery 
could also entice a technologically savvy younger generation (e.g. Generation Y) to farming as 
an occupation.  However, none of the above issues are of concern if autonomous machinery is 
not profitable for producers.                
The potential economic benefits from utilizing autonomous machines are numerous.  Replacing 
a human operator with automated controls could reduce average labor requirements and 
associated costs.  Furthermore, autonomous agricultural field operations could occur 24 hours 
per day and seven days a week during times of favorable field conditions thereby mitigating some 
of the risk associated with untimely field operations.  By utilizing smaller machines with intelligent 
controls, the metering and distribution of inputs can be improved thereby eliminating off-target 
and off-rate application errors which increases use-efficiency, reduces costs, and improves crop 
quality.  With the reduction in machine size and inherent weight advantage comes a reduced 
potential for soil compaction.  Coupled with the ability to improve chemical use efficiency, the 
environmental impacts of autonomous machinery could be significant.  Hence, the utilization of 
autonomous machinery could develop into a more profitable approach to production agriculture.    
The opportunity rarely presents itself in which economics can influence the initial development of 
a technology.  A thorough economic evaluation of autonomous machinery systems can provide 
engineers with valuable information regarding the costs and benefits required for autonomous 
machinery to compete with conventional machinery.  One of the largest challenges facing the 
machinery industry/engineers is how much to invest in the development of intelligent controls 
necessary for the implementation of autonomous machinery.  A key decision tool for 
manufacturers is the break-even investment price.  This represents the maximum price that 
manufacturers can charge for a technology, (in this case intelligent controls) at which a producer 
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is indifferent between operating with conventional versus autonomous machinery.  However, 
other important factors are embedded within the product price such as the profit to the firms, 
additional implementation costs (e.g. insurance, legal, product support, and subscription costs), 
and opportunity costs from switching from conventional to autonomous machinery (e.g. learning 
curve cost).  Therefore, the price which manufacturers could charge producers will likely be some 
fraction of the break-even investment price.     
The goal of this project was to assess the economic viability of performing agricultural field 
operations autonomously by completing the following objectives: (1) develop a whole farm 
planning model for grain production that allows comparison between conventional and 
autonomous machinery systems, (2) determine the optimal conventional machinery complement 
necessary to perform agricultural field operations common in grain production, (3) determine the 
optimal complement of autonomous machines necessary to perform the same field operations, 
(4) determine the break-even investment price for intelligent, autonomous controls, (5) 
demonstrate the ability of the model to incorporate additional anticipated economic benefits that 
will accrue to autonomous machinery and the impact on net returns and break-even investment 
price, and (6) determine the impact of farm size on the above objectives. 

Autonomous Research Development 
Introducing smaller, light-weight machinery that can perform agricultural field operations may 
prove to be a realistic option for producers in the future.  These machines will likely operate in 
fleets and utilize intelligent controls to perform production operations like seeding, spraying, 
fertilizing, and harvesting.  Recently, researchers and engineers have developed various 
prototype vehicles capable of autonomous operation.  These prototypes have the ability to 
accommodate various attachments such as tillage tools, seeders, and sprayers, much like an 
operator driven tractor.  Several studies have investigated the development, design, and 
implementation of autonomous machinery (Blackmore et al., 2004; Blackmore and Blackmore, 
2007; Vaugioukas, 2007; Vaugioukas, 2009).  Further research has been conducted to analyze 
the accuracy, steering, and performance of various autonomous prototypes (van Henten et al., 
2009; Marchant, 1997; Bak and Jakobsen, 2004).  Other studies have concentrated specifically 
on autonomous weed detection and management (Gottschalk et al., 2009; Ruckelshausen et al., 
2009; Pedersen et al., 2007; Pedersen et al., 2006; Astrand and Baerveldt, 2002).  Harvesting 
grain could be very difficult to perform with smaller, light-weight autonomous machinery due to 
the volume of biomass to be processed and removed from the field.  As a result, harvest 
operations may be the last to the automated. 
The most difficult issue facing engineers in the development of autonomous machines is making 
them safe and reliable.  Researchers and engineers have begun to address this problem by 
equipping the autonomous machine with perception and sensing technologies for obstacle 
detection; interrupt and error handling routines; and multi-level control architectures to optimize 
system behavior (Griepentrog et al., 2009; Vougioukas, 2009; Rackelshausen et al., 2009; Pitla 
et al. 2010a; Pitla et al. 2010b).  It is recognized that safety is paramount to the successful 
commercialization and deployment of autonomous field machinery.  However, the solution to 
achieve satisfactory levels of safety and reliability could be costly.  In this context, the break-even 
investment price will serve as a useful guide for researchers and engineers developing such 
intelligent controls and control architectures. 
Economists have also begun investigating the potential of autonomous vehicles for agricultural 
operations.  Goense (2005) analyzed an autonomous row crop cultivator to determine the effect 
of the size of autonomous implements on mechanization costs.  Pedersen et al. (2006) compared 
the costs and potential benefits of an autonomous machine that was capable of field scouting 
cereal crops.  Partial budgeting was used to determine that autonomous field scouting reduced 
the costs by 20%, but profitability was sensitive to initial investments and the annual costs for the 
GPS system.  In 2007, Pederson et al. conducted an investigation into autonomous weeding and 
grass cutting.  Partial budgeting was used to compare the cost changes to conventional practices 
and determine if autonomous machinery was cost-effective.  Providing adequate safety measures 
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and control systems could be implemented at a reasonable cost, autonomous weeding and grass 
cutting could be a viable alternative to conventional systems.  Because of the infancy of 
autonomous field machinery and lack of suitable economic investigations, numerous research 
opportunities exist that could provide valuable insight into the development and profitability of this 
technology.   

Economic Model 
The introduction of autonomous field machinery may produce complex interactions affecting not 
only machinery management but also changes to labor requirements, timing of field operations, 
and other cropping practices.  To facilitate the analysis, a decision-making framework was 
established.  The model considered the entire farming system and allowed for changes in 
cropping patterns, machinery complements, and labor requirements.  A common decision-making 
framework in farm management is a whole farm planning model.  Whole farm planning models 
have the ability to capture interactive effects that can occur between elements within the model 
that most decision-making aids, such as partial budgeting, ignore.  Also, the attention to detail 
and complexities of a whole farm model provide a more accurate depiction of changes that occur 
at the farm level.  Given this, a whole farm planning model was ideal for comparing machinery 
alternatives. 
One of the main objectives of this study was to develop a multi-faceted whole farm planning model 
to accomplish a comparison for conventional versus autonomous machinery options for grain 
production.  A mixed integer mathematical programming formulation was developed that 
incorporated three optimization models: machinery selection, resource allocation, and 
sequencing which followed the framework by Danok et al. (1980).  The machinery selection 
component was the foundation of the whole farm planning model and provided insight into the 
optimal size of conventional machinery and the optimal number of autonomous vehicles required 
to perform specific agricultural field operations common in grain crop production.  When 
comparing conventional versus autonomous equipment, machinery costs and performance data 
differentiated the two analyses and were reflected when optimizing net returns while using the 
same model formulation.  The underlying machinery selection model consisted of the following 
objective function and constraints:   

Max NR####    (1) 
Subject to: 

∑ %
&'( 𝑁𝑅'( − 𝑁𝑅#### = 0     (2) 

∑ 𝑃// 𝑆𝐴𝐿𝐸𝑆/,'( − ∑ ∑ ∑ ∑ ∑ 𝑂𝑃6𝐴𝐶𝑇/,9,6,:,;<;<:69/ − ∑ 𝑂𝑊𝑁6 ∗ 𝐵𝑈𝑌6 	−6
∑ ∑ ∑ ∑ 𝑉𝐶/𝑃𝑅𝑂𝐷/,E,9,F	F9E/ −𝑁𝑅'( = 0										∀𝑌𝑅   (3) 

∑ ∑ ∑ ∑ 𝐸𝑋𝑃𝑌𝐿𝐷I,/,E,9,F,'(𝑃𝑅𝑂𝐷/,E,9,F − 𝑆𝐴𝐿𝐸𝑆/,'( = 0										∀𝐶, 𝑌𝑅F9E/  (4) 

∑ 𝐵𝑈𝑌66 = 1    
 (5)  
   
         

𝐵𝑈𝑌6KL − 𝐵𝑈𝑌M⊆O ≥ 0				∀𝐼    (6) 
 
Equation 1 represented the objective function of the model which was to maximize average net 
return (𝑁𝑅####).  Equations 2-6 defined relevant variables and imposed various constraints related to 
the machinery selection portion of the mixed integer programming model.  To determine the 
maximum average net returns, both net returns and the mean of those net returns must be 
defined.  The mean net returns were defined as the sum of net returns (𝑁𝑅'() estimated each 
year (YR) divided by the total number of years (N) considered (Equation 2).  The net returns per 
year equaled the total sales minus the total costs (Equation 3).  Total sales equaled the amount 
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of each enterprise (E) sold per year in kilograms (𝑆𝐴𝐿𝐸𝑆/,'() multiplied by the price per kilogram 
of each enterprise (𝑃/).  Total costs were determined from machinery operating costs, machinery 
ownership costs, and all other variable costs of production (e.g. seed cost, chemical cost, fertilizer 
costs, etc.).  Total operating costs per machine equaled the cost per hectare to operate machine 
M (𝑂𝑃6) multiplied by the total number of hectares covered when performing the various 
production activities (𝐴𝐶𝑇/,9,6,:,;<) common in grain production.  Each production activity (e.g. 
planting, spraying, fertilizing, and harvesting) was defined by enterprise (E), planting date (P), and 
the appropriate machine (M) to conduct the activity (A) during the specified week(s) (WK).  The 
specification of planting date to defined production activity is clarified in the forthcoming 
sequencing discussion.  Total machinery operating costs were determined by summing across all 
machines. 

To calculate the ownership cost, a machine must be purchased (𝐵𝑈𝑌6) before the annual 
ownership cost of the machine (𝑂𝑊𝑁6) could be incurred.  The sum of all ownership costs of 
purchased machines determined the total machinery ownership costs of production.  
Furthermore, the total of all other variable costs of production equaled the variable costs per 
hectare of production (𝑉𝐶/) for each enterprise multiplied by how many hectares of each 
enterprise was produced (𝑃𝑅𝑂𝐷/,E,9,F) and summed across enterprises.  The number of hectares 
of each enterprise (E) produced was defined by variety (V), planting date (P), and soil type (S).  
These components combined to identify per year and average net returns.    
To calculate per year net returns, total sales (Equation 4) was defined as the estimated yields in 
kilograms per hectare (𝐸𝑋𝑃𝑌𝐿𝐷/,E,9,F,'() multiplied by how many hectares of each enterprise was 
produced (𝑃𝑅𝑂𝐷/,E,9,F).  The inclusion of estimated yields based on variety, plant population, and 
soil type allowed for optimal crop planning by determining the area allotment for each enterprise. 
More details regarding implementation of estimated yields are provided in the next section.     
Purchase constraints were also required within the machinery selection portion of the model 
(Equations 5 and 6).  For the selection of conventional machinery, the model was required to 
choose one machinery complement.  Each complement contained the necessary equipment to 
complete the agricultural field activities, while the combination of varying equipment sizes 
differentiated each complement.  Equation 5 was only necessary when selecting conventional 
machinery.  On the other hand, the selection of autonomous machinery required a different 
purchase constraint (Equation 6).  Since autonomous machinery is still in the developmental 
stage, only one machinery complement was contained in the choice set (e.g. an autonomous 
prototype).  Instead of selecting the optimal size of machinery (conventional analysis), the 
autonomous analysis selected the optimal number of autonomous machines to complete the 
agricultural field activities.  Equation 6 specified that the number of autonomous vehicles must 
equal or exceed the optimal number of implements for a particular operation.  For example, if five 
planters are optimal, then you must own five or more autonomous tractors.      
The mixed integer programming model was also constrained by limitations associated with 
resource allocation and the competition among scarce resources.     

 

 ∑ ∑ ∑ 𝑃𝑅𝑂𝐷/,E,9,FF9E − S %
'(F

T ∗ 𝐴𝐶𝑅𝐸	 ≤ 0		∀𝐸          (7)          

∑ ∑ ∑ 𝐹𝐶6,::9/ 𝐴𝐶𝑇/,9,6,:,;< − 𝑇𝐼𝑀𝐸;<𝐵𝑈𝑌6 ≤ 0			∀𝑊𝐾,𝑀                              (8)                        

𝑆𝑂𝐼𝐿𝑅𝐴𝑇𝐼𝑂FY𝑃𝑅𝑂𝐷/,E,9,FZ − 𝑆𝑂𝐼𝐿𝑅𝐴𝑇𝐼𝑂FZ𝑃𝑅𝑂𝐷/,E,9,FY = 0						∀𝑆[,\,[]\, 𝐸, 𝑉, 𝑃      (9) 

             
One of the limiting resources in agricultural production is land; therefore, a land constraint was 
required so that the area (ha) designated to producing each enterprise (𝑃𝑅𝑂𝐷/,E,9,F) did not 
exceed the designated amount of available cropland for the study (ACRE).  Since crop rotation 
was common in grain production, there existed a rotation component, in which the land area 
designated to each enterprise was proportionate to the number years in rotation (YRS).  To 
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employ the rotational component within the model, a categorization matrix 𝑅𝑂𝑇𝐴𝑇𝐸/ was required 
to identify the enterprises in rotation.   
Another limiting resource in agricultural production is time; therefore, a suitable field time 
constraint was required (Equation 8).   This constraint ensured that the machinery operating time 
(h) for each production activity, designated by the field capacity of the machine (𝐹𝐶6,: ) in ha h-1 
for each production activity multiplied by the total area (ha) of each production activity, did not 
exceed the amount of suitable field hours available each week (𝑇𝐼𝑀𝐸;<).  However, the complete 
complement must be purchased to operate during those suitable field hours.   Therefore, the total 
amount of time to complete each activity must be less than the available suitable field hours.       
Since the model incorporated yield data that was estimated on various soil types (S), a soil 
balance constraint was required (Equation 9).  This constraint ensured that the optimal area (ha) 
of each enterprise produced was proportionate to the ratio of soils in the study area (𝑆𝑂𝐼𝐿𝑅𝐴𝑇𝐼𝑂F).  
For example, if the study area consisted of two soil types and the ratio was 4:1, this constraint 
ensured that the estimated yields on the two soil types reflected this ratio when determining total 
yields for the study area.   
Finally, grain crops are produced through a process involving multiple field activities (e.g. 
spraying, planting, fertilizing, and harvesting).  Each process is not only competing for resources, 
but typically involves a sequence in which one process must be completed before the next begins.  
Therefore a sequential component was incorporated into the mixed integer programming model 
(Equation 10).         
 
∑ ∑ ∑ 𝑃𝑅𝑂𝐷/,E,9,FFE/ − ∑ ∑ ∑ ∑ 𝐴𝐿𝐿𝑂𝑊/,9,:,;<;<:6/ 	𝐴𝐶𝑇/,9,6,:,;< ≤ 0										∀𝑃   (10)            

 
When determining the sequence of events, a reference point was designated.  For this model, all 
activities were performed either before or after planting (P) a specific enterprise.  Each production 
activity must occur during an ideal time frame (𝐴𝐿𝐿𝑂𝑊/,9,:,;<) for the study area.  This equation 
guaranteed all production activities were completed in the correct sequence, as well as during the 
appropriate week.  Equations 1-10 comprised the mixed integer mathematical programming 
formulation that was employed for evaluating conventional versus autonomous machinery.   
Combining the three elements above formed a unique and complex whole farm planning model 
that was capable of joint selection including machinery and crop planning.  The focus of this study 
was solely on the machinery selection to provide valuable information to engineers and 
researchers with regard to autonomous machinery cost structure and implementation.   

Case Analysis Framework 
To properly assess a grain farmers’ optimal machinery selection decision as required for the 
second and third study objectives, the underlying production environment must be established.  
This investigation was modeled after a typical western Kentucky farm producing corn and 
soybeans in a two year rotation.  Both enterprises were produced under no-till conditions for an 
850 ha farm.  This farm size depicted the upper one third in management as represented by net 
farm income of grain producers in the Ohio Valley region of Kentucky enrolled in the Kentucky 
Farm Business Management Program (Pierce, 2009).  The yields estimated for this case study 
used the Decision Support System for Agrotechnology Transfer (DSSAT), a biophysical 
simulation model (Jones, 2003).  Utilizing soil surveys from the National Resources and 
Conservation Service, four predominant soil types were identified in western Kentucky: deep silt 
loam, shallow silt loam, deep silt clay, and shallow silt clay.  The soil ratios were 60%, 15%, 20%, 
and 5%, respectively.  Validations were performed and the resulting simulated yields were thought 
representative of a Western Kentucky grain farm.  For this investigation, a subset of the yield data 
from Shockley et al. (2011) was employed  
Specific sequences of field operations must occur for the production of corn and soybeans.  For 
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corn, the sequence of operations is pre-plant fertilizer/lime application, burn down herbicide 
treatment, planting, pre-emergence herbicide application, post-emergence herbicide application, 
nitrogen application, and harvest. Soybean production required pre-plant fertilizer/lime 
application, burn down herbicide treatment, planting, post-emergence herbicide application, 
insecticide treatment, and harvest.  These production practices for both corn and soybeans were 
consistent with University of Kentucky Cooperative Extension Service Bulletins (2008).  In 
addition, this bulletin provided input application rates and timing for performing specific operations 
which, in turn were applied to the whole farm planning model.  Harvest and the application of 
phosphorous, potassium and lime were assumed to be custom hired.  
To complete these production activities, the appropriate conventional and autonomous machinery 
complements were selected.  A conventional machinery complement consisted of a tractor, 
planter, sprayer, and fertilizer applicator.  The machinery choice set represented typical options 
available to a grain producer (Table 1).  All data for conventional machinery were compiled from 
the Mississippi State Budget Generator (Laughlin and Spurlock, 2007), which complied with 
ASABE Standards D497.7 and EP496.3, and reflected 2010 costs.  Specifically, operating costs 
(fuel, repair and maintenance, and labor), annual costs of ownership, and the performance rates 
of the implements were utilized in the machinery selection decision.  In addition, the Mississippi 
State Budget Generator was used to estimate all other variable costs based on costs paid by 
Kentucky producers in 2010.  
Table 1.  Conventional options to compose machinery complements for development of the 
choice set under the case study.  

Tractor:  105 hp, 130 hp, 190 hp, 300 hp, 400 hp   
Sprayer (Broadcast): 8.2 m, 12.2 m, 15.2 m, 18.3 m, 27.4 m, 36.6 m 
No-Till Split-Row Planter: 4-row, 6-row, 8-row, 12-row, 16-row, 24-row 
Liquid Fertilizer Applicator: 6-row, 8-row, 12-row 

Note:  All potential solutions followed appropriate draft and equipment matching requirements. 
Economic modeling of autonomous machinery is scarce because of the lack of necessary data, 
especially when considering machinery selection decisions.  Fortunately, faculty members in the 
University of Kentucky Department of Biosystems and Agricultural Engineering have developed 
autonomous tractor prototypes.  This study used actual costs and performance data based on 
one of these prototypes (Table 2).  The base autonomous prototype machine was designed to be 
fitted with interchangeable implements (planter, sprayer, and fertilizer applicator), similar to a 
conventional tractor.   The ownership costs of the autonomous tractor and implements were 
annualized to include depreciation and the opportunity cost of capital invested.  Since optimal 
intelligent, autonomous controls have yet to be established, the cost of such controls was 
excluded from those presented in Table 2.  
Therefore, this study determined a break-even investment price (Objective 4) to guide the 
development of intelligent, autonomous controls.  Options other than purchasing the equipment 
(i.e. short-term rental, leasing, and custom hiring) were excluded from this study because of the 
lack of appropriate data.  Depreciation was calculated using the straight-line method with an 
assumed three year useful life and salvage value of 50% of the cost for the autonomous vehicle 
(without controls) and implements.1  The opportunity cost of capital investment was calculated 
using an 8% interest rate.  In addition, labor equivalent to that required with conventional 
machinery was removed from the autonomous investigation.  There were anticipated incidental 
labor costs associated with refilling seed, chemical, and fertilizer, as well as transporting the 

                                                
 
1 The annual costs for owning an autonomous machinery was calculated as follows using straight-line depreciation plus opportunity 
cost of the capital investment: [((Total Investment – Salvage Value)/(Useful Life)) + ((Total Investment + Salvage Value)*Interest 
Rate)/2]. 
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machines to different locations, but these were not addressed in this study.  In addition, there was 
an anticipated opportunity cost associated with the implementation of the new machinery 
paradigm, which was not included in this investigation. 
Table 2. Cost and performance data related to the autonomous prototype developed by the 
University of Kentucky and estimates of implement specifications utilized for the case analysis. 

 Tractor2 Planter3 Sprayer4 
Fertilizer 

Applicator5 
Total Ownership Cost (U.S.$)1 24,543 6,000 7,500 13,000 
Implement Specifications     
          Speed (mph)  5 8 8 
          Width (m)  3.0 6.1 7.6 
          Efficiency (%)  70 80 75 
          Field Capacity (ha h-1)  1.7 6.3 7.4 
Repair and Maintenance (%) 50 50 50 50 
Useful Life (years) 3 3 3 3 
Annual Usage (hours) 600 200 150 150 

1Total ownership costs exclude the costs of intelligent controls for automation.   
2The tractor was a 46 hp KAT II in which costs composed of a U.S.$3,600 engine, U.S.$2,760 wheel motors, 
U.S.$900 pumps, U.S.$1,800 hydraulics, U.S.$720 wheels/tires, U.S.$750 electronics, and U.S.$14,013 
for the structure.  In addition, the tractor had fuel use rate of 2.7 gal h-1 and fuel efficiency of 17.04 hp.h gal-
1 
3A row seeder attachment was estimated at U.S.$1,500 per row. 
4The sprayer was equipped with a 1514 l (400 gal) tank.  
5The fertilizer applicator consisted of a spinner and apron chain mechanism with a 1814 kg spreader box.   

Additional data required included determining suitable field time (𝑇𝐼𝑀𝐸;<) for both conventional 
and autonomous analyses.  The total available hours per week was dependent on the number of 
probable suitable field days and the hours worked per day.  The number of probable suitable field 
days per week for the study area was based on historical data from Crop Progress and Condition 
Reports for Kentucky (USDA-NASS, 2010).  The conventional analysis was limited by the human 
operator; therefore, only 13 hours per day was assumed (Shockley et al., 2011).  On the other 
hand, autonomous machinery can operate 24 hours per day, which was assumed for this study 
(Pedersen et al., 2006; Blackmore et al., 2004).  The overall machinery selection model was 
consistent across both types of machines with respect to the tasks performed, with the technical 
data differentiating the two analyses.   

Results   
Conventional versus Autonomous Machinery Results: Base Comparison 
Given the framework above, the models selected the optimal conventional machinery 
complement from the inventory of available equipment, and also selected the optimal number of 
autonomous machines to perform the same sequence of field operations for an 850 hectare grain 
farm (Table 3).  The model suggested that two autonomous tractors and planter were necessary, 
but only one of all other implements.  This was attributed to the field capacity of the planter and 
the area to be planted.   
When comparing autonomous and conventional machinery (Table 3), the net returns were 
U.S.$15,196 (2%) greater when operating with autonomous machinery.  The majority of additional 
returns were attributed to a reduction in machinery ownership and operating costs.  There was a 
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24% reduction in machinery ownership costs and a 17% reduction in machinery operating costs.  
In addition, a slight yield increase in corn contributed to greater net returns because of the ability 
to plant more of the area to corn within the optimal planting period using autonomous versus 
conventional machinery.  Since the investment costs of modeled autonomous machinery did not 
include the cost of intelligent controls, the difference in net returns (U.S.$15,196) represented a 
“maximum annual willingness to pay” by producers for intelligent, autonomous controls.    
Specifically, this investment price reflected what a manufacturer may be able to charge for 
intelligent controls in addition to the explicitly modeled U.S.$24,543 per autonomous tractor for 
which a producer would be indifferent between operating with conventional versus autonomous 
machinery, ceteris paribus.  This value considered the investment price impacts on both 
ownership (depreciation and interest) and operating costs (repairs and maintenance).  For this 
scenario, the break-even investment price for intelligent controls was U.S.$33,327.  When broken 
down, an investment price of U.S.$33,327 led to a depreciation cost of U.S.$11,108, interest cost 
of U.S.$3,999, and repairs and maintenance cost of U.S.$89 which totaled U.S.$15,196.  Recall 
that this represents the maximum a manufacturer can charge for intelligent controls as discussed 
in the introduction; therefore, the actual charge will likely be some fraction of this price. It is 
important to note that these results are representative of this particular case study and 
autonomous prototype examined.   
Table 3.  Machinery selection and corresponding economic results for both conventional and 
autonomous machinery scenarios for an 850 hectare grain farm.  

 Conventional Autonomous 
Tractor(s) 130 hp 2 – 46 hp 
Planter(s) 8 row 2 – 4 row 
Fertilizer App. 8 row 1 – 7.6 m 
Sprayer 18.3 m 1 – 6.1 m 

Avg. Net Returns (U.S.$) 751,358 766,554 
Min. Net Returns (U.S.$) 471,517 468,695 
Max. Net Returns (U.S.$) 962,506 1,026,745 
Std. Dev Net Returns  (U.S.$) 145,086 148,265 
Coef. of Var. Net Returns (%) 19.31 19.34 
Ownership Costs (U.S.$) 24,191 18,493 
Operating Costs (U.S.$) 26,187 21,811 
Production Input Costs (U.S.$) 348,512 348,512 

Corn Yield (kg ha-1) 10,168 10,231 
Soybean Yield (kg ha-1) 4,169 4,169 

Inclusion of Additional Anticipated Economic Benefits 
Beyond the results for the base comparison, this study focused on two of the most anticipated 
additional quantitative benefits that could accrue through utilization of autonomous machinery: 
reduced selected input costs and increased yields from reduced compaction.  The estimates used 
for demonstrating the ability of the model to incorporate such benefits were determined from 
literature pertaining to various autonomous prototypes (e.g. Pedersen et al., 2006; Blackmore et 
al., 2004; Rackelshausen et al., 2009; van Henten et al., 2009).   
The reduction in selected input costs was considered one of the primary benefits of utilizing 
autonomous machinery.  For this study, the input costs impacted by autonomous machinery 
included herbicide, insecticide, seed, and nitrogen costs.  Previous studies have reported up to a 
90% reduction in herbicide cost alone for an autonomous micro-sprayer because of its ability to 
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recognize individual weeds and target herbicide application (Pedersen et al., 2007).  Other inputs 
such as fertilizer and seed were not expected to experience such a dramatic reduction in costs 
but could be reduced by eliminating overlap application of inputs.  Therefore, a conservative 
estimate of a 10% reduction in the total cost for selected inputs was applied to autonomous 
machinery.   In addition, large, heavy farm machinery often contributes to soil compaction 
resulting in a reduction in yields.  The University of Kentucky Extension Services reported a 
reduction in corn and soybean yields of 7% due to soil compaction (Murdock and James, 2008).  
As a result of the lightweight configuration of the autonomous vehicles, soil compaction should be 
reduced resulting in increased yield potential; therefore, a yield increase of 7% percent was used 
for this study.   
Given the inclusion of the anticipated quantitative benefits from autonomous machinery, new 
selection and economic results were determined (Table 4).  Four different scenarios were 
represented: base comparison (Scenario 1), the inclusion of only a selected input cost reduction 
(Scenario 2), the inclusion of only a yield increase (Scenario 3), and the inclusion of all anticipated 
benefits (Scenario 4).  Scenario 4 combines the benefits accrued under the base comparison with 
a selected input cost reduction and yield increase.  Under Scenarios 2-4, the optimal number of 
autonomous machines remained the same as the base comparison; hence, there was no change 
in machinery operating and ownership costs.   
Table 4. Autonomous machinery selection and economic results for the inclusion of various input 
cost reductions and yield increases due to reduced compaction for an 850 hectare grain farm. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Selected Input Cost Reduction 0% 10% 0% 10% 
Yield Increase 0% 0% 7% 7% 
     

Avg. Net Returns (U.S.$) 766,554 801,406 862,364 897,215 
Min. Net Returns (U.S.$) 468,695 503,547 543,655 578,506 
Max. Net Returns (U.S.$) 1,026,745 1,061,597 1,140,768 1,175,619 
Std. Dev. Net Returns (U.S.$) 148,265 148,265 158,643 158,643 
Coef. of Var. Net Returns (%) 19.34 18.50 18.40 17.68 
Production Input Costs (U.S.$) 348,512 313,661 348,512 313,661 
B-E Investment Price (U.S.$)1 33,327 109,755 243,436 319,864 
     

Avg. Corn Yield (kg ha-1) 10,231 10,231 10,984 10,984 
Avg. Soybean Yield (kg ha-1) 4,169 4,169 4,438 4,438 

1B-E refers to break-even.  
The inclusion of additional anticipated benefits from operating with autonomous machinery 
increased net returns above those with conventional machinery.   Net returns increased by 
approximately 7%, 15%, and 19% for Scenarios 2-4, respectively.  Therefore, if operating with 
autonomous machines provides such additional benefits, the break-even investment price for 
intelligent control increases dramatically to almost U.S.$320,000.  Consequently, it is important 
to first understand what additional benefits and to what magnitude they will occur because they 
will have a substantial impact of what manufacturers could charge for and invest in the 
development autonomous machinery. 
In addition, all scenarios incorporating additional benefits increased the minimum and maximum 
net returns and illustrated the potential for reducing yield risk as represented by a decrease in the 
coefficient of variation when compared to operating with conventional machinery.  This again 
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illustrated the importance of understanding the potential for additional benefits because it could 
possibly lead to interesting implications such as risk reduction.  
Sensitivity Analysis on Farm Size  
Sensitivity analyses were conducted to determine the effect farm size had on the increase in net 
returns above operating with conventional machinery, and the break-even investment price for 
intelligent, autonomous controls under the four scenarios examined in this study.   Farm size had 
little impact on net returns over operating with conventional machinery for each scenario (Figure 
1).  The average increase in net returns across field size was 4%, 9%, 18%, and 22% for 
Scenarios 1-4, respectively.  The percent increase in net returns did increase dramatically for 
smaller farm sizes under each scenario.  This might be a function of excluding ownership of used 
machinery in the conventional choice set.  Nonetheless, the results do provide evidence of the 
potential for greater profitability by operating autonomous machinery on smaller farms due to the 
ability of smaller farms to capture economies of size with autonomous machinery.   
Figure 1. The percent increase in net returns above operating with conventional machinery based 
on farm size for the four scenarios examined. 
 

 
The impact farm size had on the break-even investment price for intelligent, autonomous controls 
was interesting.  The breaks illustrated in Figure 2 represent when an additional autonomous 
tractor was required to complete the agricultural tasks and represented the integral nature of 
machinery acquisition.  Under Scenario 1 (base comparison) and Scenario 2 (10% selected input 
reduction), the number of autonomous tractors required goes from one to two when farm size was 
689 ha and from two to three at 1043 ha. Under Scenario 3 (7% yield increase) and Scenario 4 
(all anticipated benefits), the additional autonomous tractors occurred at 667 and 1021 ha, 
respectively.  Across farm sizes examined, the break-even investment prices for intelligent, 
autonomous controls averaged U.S.$41,200, U.S.$110,490, U.S.$225,027, and U.S.$292,272 for 
each scenario, respectively.  In addition, the maximum break-even investment price for intelligent, 
autonomous controls across farm sizes for each scenario were U.S.$61,017, U.S.$184,313, 
U.S.$378,088, and U.S.$494,194, respectively.  Therefore, farm size must be considered when 
manufacturers determine how much they will be investing in intelligent, autonomous controls.     
Figure 2. The break-even investment price for intelligent, autonomous controls based on farm 
size for the four scenarios examined. 
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Conclusion  

The replacement of human operators in agricultural production with advanced technology can 
lead to changes in the entire structure of agriculture and impact society at a multitude of levels.  
However, if advanced technologies such as autonomous machinery are not profitable for 
producers, their impacts will never be realized as these technologies will not be adopted.    
Therefore, a multifaceted whole farm planning model was developed to compare conventional 
and autonomous machinery options for a grain crop operation.  A mixed integer mathematical 
programming formulation was developed that incorporated three optimization models: machinery 
selection, resource allocation, and sequencing.  The model determined the optimal conventional 
machinery complement necessary to perform agricultural tasks common for the farm.  In addition, 
the model determined the optimal number of autonomous machines to perform the same 
agricultural tasks.  Given the case study, autonomous machinery was more profitable than 
conventional machinery for all scenarios investigated.  The most costly investment in autonomous 
machinery is intelligent controls.  Therefore, the break-even investment price for intelligent, 
autonomous controls was determined.  If no quantitative benefits were incorporated into the 
model, the break-even investment price for intelligent, autonomous controls was U.S.$33,327 for 
the case study.  However, when incorporating additional benefits such as selected input cost 
savings and increased yields, the break-even investment price for intelligent, autonomous 
controls increased dramatically (up to U.S.$319,864 for an 850 ha farm).  There was also 
evidence to suggest that autonomous machinery could reduce yield risks associated with grain 
crop production.  In addition, sensitivity analyses were conducted to determine the effect farm 
size had on the increase in net returns above operating with conventional machinery and the 
break-even investment price for intelligent, autonomous controls.  It was concluded that farm size 
influences the break-even investment price for autonomous controls, and must be considered by 
researchers and manufacturers.   
Given that autonomous field machinery can have a profound impact on the structure of 
agriculture, a host of research opportunities exist.  One apparent area of research concerns the 
impact on labor markets.  By removing operators from agricultural field machinery, opportunities 
exist to study off-farm income and the impact this will have on rural economic development.  
Finally, there are numerous managerial concerns to address for the successful implementation of 
autonomous machinery. 
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