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Abstract. There is a knowledge gap in agriculture. For instance, there is no way to tell with precision what 
is the outcome of cutting N fertilizer by a quarter on important outcomes such as yield, net return, 
greenhouse gas emissions or groundwater pollution. Traditionally, the way to generate knowledge in 
agriculture has been to conduct research with the experimental method where experiments are conducted 
in a controlled environment with trials replicated in space and time. While this method has proven its 
potential to generate knowledge, it has also shown limitations in terms of speed and amount of resources 
required. Indeed, at the current pace of agricultural impacts on the biosphere, it is likely that traditional 
experimental research won't be able to generate the knowledge required in a timely fashion. A paradigm 
shift is needed to shorten the time between the detection of a problem and the access to a reliable solution. 
One possible avenue is to use another scientific approach, notably the observational method, which 
relies on a large number of observations to draw conclusions. The advent of communication and 
information technologies in agriculture opens new possibilities, notably to conduct observational research 
with big datasets. By observing farm inputs and outputs contextualized with soil, climate, and weather data, 
there is a tremendous potential to improve farm input use efficiency by adjusting prescriptions to each and 
every location in every field of every farm. It is most likely that to keep up with the rapid pace of agricultural 
impacts on the environment, observational science needs to be implemented at a global scale.  
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Introduction 

Global agricultural crisis 
The agricultural sector is facing a global multifold crisis impacting, among other factors: 
biodiversity, climate change, food production, soil degradation, water pollution and human health 
(Mazoyer and Roudart 2002). Farmers around the world are facing the colossal task of providing 
food, fuel and fiber in a sustainable way to a growing population while challenged to maintain 
profitability of their businesses. Agriculture is being performed with an industrial approach while it 
is taking place in nature, with all the variability and uncertainty implicit to natural environments. In 
other industrial production sectors, it is possible to evaluate the impacts of management on 
production with a high level of precision, thus enabling optimization of input use. In agriculture, 
farmers currently don’t have the necessary tools to predict, for example, how reducing N fertilizer 
rate by one quarter will affect yield, net revenue, GHG emissions or ground water pollution (Fig. 
1).  

 
Fig 1. Currently, farmers and agronomists do not know the precise implication of, for instance, cutting N rate by 50 kg/ha 

on yield, net return, water or air pollution. 

A similar challenge applies for a large majority of farm inputs. Without all the information required 
to manage farm inputs with precision, we tend to overcompensate and use higher amounts of 
inputs than necessary, thus contributing to the current agricultural crisis in which we have crossed 
multiple planetary boundaries below which, we maintain a safe operating space for humanity 
(Rockström et al. 2009). Furthermore, there is a lack of accountability for these actions, as well 
as a decoupling in space and time of management practices effects. In this regard, a practice can 
be beneficial from the farmer’s business perspective but can have harmful, and potentially 
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unknown, consequences later on the farm or elsewhere (e.g. US Midwest maize production 
impacting fisheries in the Gulf of Mexico). 
In order to provide required tools for farmers to develop production systems that are sustainable 
in an environmental perspective, farmers, practitioners, businesses and scientists are developing 
techniques and technologies that have substantial impacts on agriculture production. Research 
in agronomy and related disciplines such as bioengineering, Information and Communication 
Technologies or mechanical engineering in the recent decades have enable agricultural 
production to greatly increase in efficiency (Barker 2007). This translates into a lower 
environmental footprint per unit of food produced that is the fruit of scientific progress and 
outstanding achievements in research and development. However, it appears that the 
environmental impacts of agricultural production outpace the scientific progress (Fig. 2). At this 
pace, there is a risk that we may not be able to provide the right tools to farmers before it is too 
late. 

 
Fig 2. Schematic of the trend of agricultural impact on the environment that is faster than the speed of scientific progress. 

 

Knowledge and innovation gap in agriculture  
Crop and livestock production involve complex systems interacting in ways that are largely 
beyond the reach of our current management ability. Conceptually, one can summarize these 
interactions as part of the G x E x M (Genetics x Environment x Management) production context 
(Hatfield and Walthall 2015).  
Traditional research in agronomy implies that to acquire knowledge, scientists need to conduct 
experiments in a controlled environment, replicating trials in space and time. Use of the traditional 
experimental study’s methodology is problematic and unpractical for conducting experiments in a 
context where so many uncontrolled variables and unknown interactions exist; this leads to large 
experimental errors that often hide the effect of controlled variables. This knowledge generating 
process cannot keep up with the current acceleration of degradation of our planet due to 
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agricultural practices. Therefore, we need to think of new ways to generate decision support tools 
for agricultural production systems. Further, traditional research methods have largely failed in 
delivering management practices that are optimal for the diversity of circumstances that are 
inherent to agricultural production, leading to a mix of low adoption, sub-optimal resource use and 
undesirable environmental consequences. For instance, global nitrogen use efficiency is about 
47%, which is of great concern as this major farm input exhibits very high environmental toxicity 
(Lassaletta et al. 2014). The current crisis emerged, to a large extent, because agricultural 
practices have neglected to adapt to nature’s variability due to a lack of available techniques and 
technologies to do so. There was a time when there was little hope of improving research and 
development models, technologies and data management options. Today, digitalization of 
agriculture is leading to new opportunities that are much better for addressing the multiple factors 
and variability that exist in nature. However, our current science, development, transfer and 
adoption system lives with a legacy of habits that limit our ability to generate, assemble, analyze 
and derive recommendations that will be applicable and trusted in diverse circumstances to 
produce desirable outcomes. 

Potential of observational studies and big data to help bridge that gap  
As agricultural research scientists, how can we do better? How can we improve on approaches 
using controlled experiments and making recommendations based on ‘averaged’ data? In simple 
systems, the best route is to build a theoretical model that takes into account all significant factors 
so that one can predict outcomes from a set of controlled and uncontrolled inputs and state 
variables. This is a powerful approach since it has been clearly demonstrated that strong theories 
can predict unobserved outcomes: Higgs boson was predicted from theory in the 1960s and was 
only recently observed. But this is the realm of theoretical physics for which there is no equivalent 
in agriculture… Why? A comprehensive system for describing crop growth in a natural 
environment would be very complex and would involve many uncontrolled random variables. 
Existing crop growth models rely heavily on empirical formulae and parameters (Di Paola et al. 
2016). 
In agricultural sciences, actionable knowledge is acquired by testing hypotheses with planned 
experiments or by developing regressions (empirical models) from observations. Today, tools are 
available to perform observational studies “on steroids”. These fall under the realm of big data. 
There are good reasons why large-scale studies with fine-scale observations can result in much 
better working models. It is possible to gather the results of thousands of uncontrolled 
experiments happening year after year on a variety of soils for a large array of crops under varying 
climatic conditions, along with the significant accompanying variables (imagery, sensors, tracers, 
weather data, production data, and soil parameters), to create big data sets.  
But data alone in a digital storage system is nothing more than record. This is where Artificial 
Intelligence (AI) must come into play. By applying AI tools to big agricultural data sets, it is 
expected that it will be possible to identify patterns where the right amount of farm inputs are 
delivered with precision at the right time and the right location to maximize yield while minimizing 
environmental impacts. This should naturally lead to the formulation of new hypotheses that could 
be tested under controlled experiments in order to refine our understanding and modeling 
capabilities. On paper, this is all valid. But how far we are from this paradigm and what actions 
can be taken to move into that direction? 

Current state of big data in agriculture 
Big data is the subject of much excitement in agricultural production these days. The reality is that 
very few, if any, sources of agricultural data actually qualify as “big data”. Interpolated weather 
data and satellite imagery may be the only publicly available data sources that can currently be 
labeled as such. Yield maps would also qualify only if they would be better calibrated, 
standardized and made more accessible. Indeed, yield maps may exist in the cloud but not 
necessarily in an open manner and with a right of use for research purposes. It is likely that other 
anticipated big data sources would be limited either in spatial density (in situ sensors, IoT devices, 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 5 

genomics samples) or temporal intensity (UAV imagery). Another significant limitation for the 
implementation of big data and AI in agriculture is the difficulty of accessing records for the 
diversity of management practices implemented by the farmers in their day-to-day operations or 
as they conduct their own on-farm experimentation. A greater adoption of traceability technologies 
and electronic logbooks would allow for bridging this gap. This data would be invaluable in the 
calibration and validation of artificial intelligence algorithms. 
Specific to data, two concepts are fundamental. First, as it is the case for most systems, the quality 
of the output depends on the quality of the input. Secondly, we can only optimize the management 
of what we can measure. Within that context, multiple sources of data are important in order to 
generate valuable actionable information. For instance, in order to optimize crop input use, 
management data such as input type, rate and timing as well as production data such as yield 
value and input costs are required. This data also needs to be contextualized using local soil, 
weather and farm records to be meaningful for each specific site. Because we can only optimize 
the management of what we measure, it is essential to access environmental data such as 
greenhouse gas emission, soil quality or water pollution. Otherwise, optimizing only yield and 
profitability may lead to even greater damages to the environment. Currently, scientists have 
access to data such as satellite imagery, weather data and national soil surveys, but do not have 
access to crop management and production data, which are held by farmers. Environmental data 
are sparse and inexistent at the scale required. 
Farmers are aware that data is considered the new oil. Data is now the world’s most valuable 
resource because of the tremendous potential for management improvement that can be 
achieved. However, data is worthless without an infrastructure organizing, diffusing and 
processing them into actionable information. Therefore, without such an infrastructure, it is difficult 
for farmers to estimate the value of their data and even more, fully appreciate the value of sharing 
their data. It is thus in developing and demonstrating the value of their data on their farm that 
resides the key for the involvement of farmers. Traditionally, agronomists rely on knowledge 
generated through small plot experiments to advise farmers on crop management. Farmers 
usually prefer to rely on knowledge generated from studies that were conducted close to their 
farm because they know that agricultural practices are specific to each and every setting where 
they are implemented. Therefore, it is by providing farmers with contextualized answers to their 
questions that they will appreciate the value of their data. In that matter, the most important data 
to scale the potential of big data and observational studies are the farm management and 
production data. 
It should also be stated that the rise of big data in agriculture is also changing relationships within 
the industry. Suppliers are no longer simply product providers. Data and analytics have become 
new currencies in this relationship. Additionally, a new generation of agronomic service providers 
has emerged – each with their own data system and basis from which to provide both agronomic 
and economic advice. These changes are also impacting the role and relevance of research 
whether this is provided publically or privately. 

The paradigm shift 
Multiple artificial intelligence methods and especially one of the most powerful ones such as Deep 
Learning, involve the use of “black boxes”. These techniques use “black boxes” by nature rather 
than by design. Indeed, the Deep Learning process involves hidden layers of interpretation to 
produce a result (Castelvecchi 2016). In this case, AI is able to provide an answer, a pretty reliable 
one at it (Ferentinos 2018), but cannot provide explanation on why this is the answer. In order to 
understand the “why” one would have to conduct experimental research and establish the 
causality. However, as it was mentioned above, conducting experimental research is costly and 
slow. Thus, the question is, Can we manage farms using recommendations for which we don’t 
understand the “why”? Another way to put it is, Can we afford anymore to understand everything 
that we implement? These are important questions that will require answers and that may lead to 
a major paradigm shift in agronomy. 
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The role of scientists 
There is a very small probability (2.1 %) that soil and plant scientists be replaced by big data and 
AI when these become main stream for farm management (Frey and Osborne 2017). Indeed, AI 
is not intended to invent new techniques and technologies, but can optimize what we already use 
on a large scale better than other processes currently used. For instance, AI could not come up 
with band applied fertilizer if all fertilizer is broadcasted. Scientists would have to think of new 
approaches, test it in controlled environment and implement it on the farm on a large scale before 
AI would recognize that this approach is more efficient. Another fundamental reason why the role 
of scientists cannot be replaced by AI is that it does not provide explanations to the answers it 
provides and there is always a certain margin of error. The task of understanding causality and 
better prepare for the rare cases when AI is mistaken, scientists will have to conduct experimental 
science to better understand the patterns detected by AI. Scientists will also have the role of 
determining the important data to consider and find ways to collect that data to be provided to AI 
algorithms in the appropriate volume and velocity. The role of scientists will thus be synergetic 
with AI rather than be replaced by it. 

Case study: Thresholds for integrated pest management in berry production 
In the province of Quebec, integrated pest management (IPM) has lost traction among berry 
growers who question the validity of crop injury thresholds (CIT) that have been developed in the 
1990s with climate conditions, crop practices, insecticides and crop varieties that were different 
than the ones used nowadays. Nevertheless, these CITs required significant investments in 
resources and time to develop. Indeed, the implementation and replication of large factorial design 
experiments that would cover several crop varieties and be conducted in multiple berry growing 
regions for the most important pest species can hardly be envisaged anymore. Moreover, the 
reliability in time of these CITs could be questioned because of the climate that is changing. 
Efficient and reliable ways of determining CITs using modern technologies are yet to be 
developed, which would facilitate the use of CITs in an IPM strategy blending in the current 
cropping practices. Without reliable CITs, more insecticides are used than necessary, leading to 
depletion of natural biological control agents and pollinators as well as pollution of the biosphere. 
The synergetic effect of depleting biological control agents and increased insecticide applications 
greatly reduces berry production profitability and acceptability by consumers. 
Another possibility for developing CITs is harnessing the workforce that is already collecting large 
amounts of data relative to pest management in berries. The development of CIT requires multiple 
pieces of information notably: pest identification and counts, pest growth stage, crop growth 
stages, crop variety, date of the year, location of the sample, weather data, type and date of 
pesticide applied and yield (crop injury) harvested among others. All this information is being 
collected routinely by growers and pest management consultants, but it is often scattered and 
disorganized and therefore cannot be analyzed. There is a need to gather and organize the data 
collected by growers and pest management consultants to develop a bank of data that would 
constantly be updated with new data collection. Using AI and metadata analysis, CITs could be 
determined in a dynamic way, constantly evolving with new data in a web-based tool that would 
be made available to all berry growers. 

Conclusion  
In conclusion, because of the speed at which agriculture is impacting the planet and the time and 
resources required to improve the situation, the status quo in soil and plant science is not 
acceptable anymore. The use of big data and artificial intelligence in agriculture has the potential 
to accelerate the access to optimal recommendations for each and every grower. However, there 
are risks and pitfalls to avoid such as optimizing only productivity and profitability and omitting 
environmental sustainability. There is an opportunity to be ceased and soil and plant scientists 
better hop in the wagon to the risk of becoming obsolete. 
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