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Abstract 
The data need of precision agriculture has resulted in an intensive increase in the number of 
modern soil survey equipment and methods available for farmers and consultants. In many cases 
these survey methods cannot provide accurate information under the used environmental 
conditions. On a 36 hectare experimental field, several methods have been compared to identify 
the ones which can support the PA system the best. The methods included contact and non 
contact soil scanning, yield mapping, high accuracy field soil survey using soil pits, grid based soil 
sampling, remote sensing with satellites and UAVs. Soil classification diagnostic features were 
collected from >130 individual points to assess the usability of modern soil classification systems 
for precision agriculture purposes. 
The accuracy of the tested methods was validated on the soil map, and with the use of several 
years of harvester based yield maps. We have found that although all the methods have identified 
certain features on the field, many of these had no or minimal effect on the yield potential of the 
field zones, thus the usage of these tools or techniques have no or negative effect on the cropping 
system and on the environment. Modern soil classification diagnostic units, although in many 
cases neglected for PA systems, can provide a more detailed baseline information for decision 
support, through the aggregated soil chemical, physical and morphological information contained 
in one class. With modern digital soil mapping technologies and a custom made sampling 
methodology these tools are comparable in speed and provide deeper knowledge on the field 
than the ‘modern’ quick survey techniques. Since precision agriculture is an intensively expanding 
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market and is supposed to be one of the main tools for sustainable agriculture a broad validation 
of these tools should be performed to identify the soil and climatic conditions where these can be 
properly used with providing the required precision and reliability. 
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Introduction 
The data need of precision agriculture has resulted in an intensive increase in the number of 
modern soil survey equipment and methods available for farmers and consultants. Often the cost 
and fast data acquisition has more importance than the accuracy and reliability of the collected 
soil or soil related information. In many cases these survey methods can hardly provide accurate 
information under the used environmental conditions.  
Several techniques have been adopted recently to provide soil information for site specific nutrient 
management. Besides the most common grid sampling, management zone delineation based on 
different data sources have been widely used among farmers and consultants. This paper 
compares these survey techniques from a yield potential perspective. 
As far as the grid sampling is concerned, a regular grid of points is defined and sampled. Thus, 
we subdivide the sampling problem by areas. The main weak spot of systematic sampling is the 
absence of an unbiased estimator of the variance [9]. Nevertheless, an intensive grid sampling 
approach reveals more variability than sampling approaches based on zones representing larger 
field [16]. However, a sampling approach like this cannot be practically adopted by producers 
when one takes into account sampling and analysis costs, labor and likely responses of crops to 
fertilization. On-farm scientific research has shown that it is not possible to measure small-scale 
nutrient variability cost-effectively using current grid sampling methods [16, 17, 25, 8]. It is, also, 
noteworthy that working on an equal-area projection is a good choice to ensure that each point 
represents the same area [9]. 
On the other hand, Management Zones Sampling improves the conventional sampling method 
by using information that can be collected using precision agriculture technologies. It reduces the 
number of samples and sampling costs while maintaining acceptable information about nutrient 
variability within a field [16, 17]. However, a management zone scheme will represent small-scale 
soil test variability less accurately than an intensive grid sampling scheme, because there will be 
fewer samples. Such a sampling scheme will be especially effective when soil type and nutrient 
removal by crops are major factors in determining nutrient variability across large areas [16]. Also, 
expertise and subjective judgement are prerequisites for the success of the method [9, 17, 8].  
The main steps for the designation of Management Zones are the following: (i) Mapping of 
properties involved in the analysis by using measurements from proximal and remote sensing 
and interpolation of the unsampled points, (ii) Subjecting the data to a clustering procedure based 
on an algorithm, which aims to depict the natural structure of the data and in most cases either 
minimizes the sum of the within-cluster variances, uses the data density, or is based on distance 
connectivity between pairs of observation, (iii) Finding the optimal number of classes in order to 
achieve a balance between spatial variation in soil properties and a manageable number of zones 
that are spatially well distributed, (iv) Delineating final zones using a GIS system, since the 
boundaries between clusters can shape the potential zones and (v) Assessing the efficiency of 
the classification by several criteria (e.g. variance reduction of the management zones compared 
to the within-field variance, accuracy, cost–benefit analysis etc.) [5, 13, 20]. 
Some of the most widely used precision agriculture technologies that enable soil scientists to 
obtain data and create management zones are yield mapping, proximal sensing, remote sensing, 
traditional soil surveys all of them with known advantages and disadvantages. 
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Yield Mapping 
The essential data for the creation of a yield map are the actual yield within the field as it is 
harvested and the position of the combine harvester at a specific time. This means that yield is 
spatially related and, thus, yield mapping is used for managerial purposes. There are two main 
errors that have been identified in many yield maps; the lag time between detachment and sensing 
of the grain, and the unknown width of crop entering the header. Furthermore, it is hard to achieve 
practical implications of management if the yield map contains many perturbances. In that case, 
smoothing of the data is required, so that only the important highs and lows are disclosed [4]. 

Proximal Sensing and Soil Scanners 
Proximal sensing has been successfully used to acquire quantitative and qualitative soil 
information, as it includes field-based sensors that are in contact with or close to the soil. These 
sensors can be more time- and cost- efficient than conventional laboratory analyses and they are 
becoming smaller, faster, more accurate, more energy efficient, wireless and more intelligent 
along with the progress of technology [24]. 
EC Scanners 

Electro conductivity of the soil is an indirect index, which correlates well with several physical and 
chemical properties of soil such as size and texture of soil particles, soil organic matter content, 
cation exchange capacity, water content in the soil, soil depth above the clay or stone layer, 
salinity and soil temperature. Experts highlight the high quality of the method, the low production 
cost and the low environmental footprint [14]. 
EM Scanners 

Electromagnetic induction (EMI) scanning is a rapid, non-invasive method for obtaining soil ECa 
(apparent soil electrical conductivity) information, especially on soil moisture content and soil 
texture. However, there is not always a perfect 100% agreement between the spatial location of 
ECa boundaries and the principal soil units of the intensive soil map [12]. This is because soil 
ECa is a function of soil texture and soil water content, but also of other factors, including soil bulk 
density and organic matter content. It is a fact that only when the costs are spread over a number 
of years would they be affordable for commercial farming. In fields where there are clear contrasts 
in soil texture, EMI surveying techniques can provide a cost-effective method as an addition to 
traditional soil survey practices [24, 12]. 

Remote Sensing 
Remote sensing techniques use radiation and are now delivering data on land surface and 
subsurface characterization at increasingly higher spectral and spatial resolutions [23]. For large 
scale surveys airborne methods are required, whereas medium scale surveys may be aided by 
both airborne and spaceborne methods. Lastly, small-scale surveys are served most by the use 
of satellite-data. Of equal importance for the selection of the most appropriate remote sensing 
means is the purpose of the study, the specific characteristics of objects at the earth’s surface 
and the climatic conditions. [19]  UAV-based remote sensing is less accurate and less feasible 
than proximal sensing, but it is cost-effective, fast in producing, manageable for the local staff and 
has good geometric accuracy [22]. It is now possible to produce accurate maps of within-field 
yield variation at 10 m resolution using Sentinel-2 data. Still, the potential of Earth Observation 
has been limited by image costs and limited repeat frequency [11]. 
Satellite Images 

The use of satellite images in soil science has mostly been driven by the growth of a wide range 
of medium resolution space-borne sensors on stable and fixed orbits. Cost and availability remain 
important issues as imagery from high-resolution sensors is not only more expensive, but also 
less likely to cover the area in consideration [22, 23]. Several spaceborne platforms enable soil 
scientists to do the quantitative measurement of ground features with a relatively lower cost per 
unit area of coverage. So, satellite images are especially useful to study large areas [18]. Also, 
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higher resolution data require great storage and computing capacity. Some significant resources 
that were brought out before 2000 have adequate repeat coverage, large scene size and low cost 
of entry. It is also noteworthy that images from Landsat 8 and Sentinel-2 are free to use [23]. 
Digital Elevation Model and derivatives 

The Digital Elevation Model (DEM) is a 3D representation of the bare soil surface, without 
depicting any objects that may exist on it [26]. It is a quantitative data source and, as a result, it 
has some important advantages like consistency and homogeneity, let alone the fact that data 
generalization and edge-matching problems are significantly reduced. The DEM-derived 
variables are elevation, slope, aspect, curvature, potential drainage density etc.. In some cases 
these attributes show high correlation with the soil classes [7]. This method is used for mapping 
large areas quickly and cost-effectively. However, the success of the method depends on the 
quality of the input imagery and the meticulousness during pre-processing [3]. Last but not least, 
the lower altitude at which they fly, allows much higher spatial resolutions than satellite imagery 
[22, 23]. 

Traditional soil survey and soil classification 
The soil landscape can be methodically described by the WRB diagnostic horizons, which 
correspond to a standard depth and, consequently, the high intensity soil survey makes the results 
of soil genesis quantifiable. Relating the diagnostic horizons in their thickness to the upper 100 
soil centimeters is a good option to replace traditional soil classification and identify the soil profile 
[15]. On the other hand, classifying depending on the morphology and formation of soil profiles, 
doesn’t allow the examination of other properties, like slope, nor the achievement of high accuracy 
and speed [1, 6]. Also, the issue of inevitable subjectivity occurs when different soil scientists map 
similar areas [6]. 
Random Forest   
A Random Forest (RF) classifier produces multiple independent decision trees, using a randomly 
selected subset of training samples and variables to separate the data into more homogenous 
units, for the purpose of a single prediction [2, 11]. Two essential parameters in this method are 
the number of trees (ntree) and the number of variables available for selection in each split (mtry) 
[21]. The Random Forest algorithm presents clear advantages over other models for mapping. To 
begin with, it can increase the amount of data available for training, and consequently its 
estimative potential, because keeping back data for validation is less important for this model. 
Moreover, RF is able to take advantage of relationships between explanatory variables in order 
to control confounding factors. The number of variables that are needed for a precise estimation 
can be decreased, due to its ability to deal with multi-variate relationships between data of 
different types and resolutions. 
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Materials and Methods 
The research was performed in Somogy county, Hungary. The area is described by loess 
blanketed or quicksand-covered sediments with milder slopes (5-15°) and a relative relief intensity 
of 20 - 50 m/4 km2. The 36 hectare field in which the different soil survey techniques were tested 
is a very heterogenous field described by different soil types due to the high relief intensity and 
the resulting erosion.  

 
Figure 1. Digital Elevation Model of the study area (UAV based) 

In the region vineyards were dominating the landscape. The land use resulted in a very intensive 
erosion process before the vineyards were removed and most of the region was transformed into 
croplands. This long lasting process is very well described by the dominant soil types of the field. 
The ridges, shoulders, and steep upper slopes are dominated by Calcisols, where the topsoil 
have been eroded and the calcium carbonate rich loess and sand based parent material is 
exposed on the surface. On the more stable, and higher slope positions Luvisols or argic 
properties are dominating with very well developed reddish clay accumulation horizons. The 
lower, valley positions are mainly described by very deep humus rich horizons and layers, due to 
accumulation of eroded surface horizon materials. These soils can be as deep as 2 meters with 
colluvic material layered on top of the original, buried soil (Figure 2.). 
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Figure 2. Dominant soil types of the study area (left to right: Calcisols, Luvisols, Kastanozems, Phaeozems (colluvic)) 

This heterogeneity very well describes, the larger region, where these highly eroded soils occur, 
thus the results of the evaluation of the tested methods can be extrapolated to larger regions, 
although cannot be used as a basis for tool selection under principally different soil and landscape 
conditions. 
The selected soil survey methods were performed within a very small time period to minimize the 
error resulted by different soil moisture conditions. No relevant precipitation was observed 
between the surveys. Most of the survey methods were performed by the same research team, 
with the exception of the contact and non-contact soil scanning methods, which were performed 
by professional consultants. The main goal of the research was to evaluate the survey 
methodologies in relation with the soil properties, and yield, but as a connecting study the different 
agronomical created by the subcontractors were also evaluated to investigate the potential 
differences, resulted by the different tool selection. 
The tested methods included contact electrical conductivity soil scanning, non-contact soil 
electromagnetic induction scanning, several years of yield mapping, high accuracy field soil 
survey using soil pits and auguring (soil classification), grid based soil sampling, remote sensing 
based vegetation indexes, digital elevation model derivatives, and a handheld soil scanner (Table 
1.). 
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Table 1. Description of survey methods used in the study 

 
To derive continuous property maps for the described survey methods, classification units and 
soil laboratory analysis Random Forest based predictions were used on a 5x5 meter grid, where 
the DEM based covariates and the satellite based MSBI index were used as covariates. These 
property maps were overlain by the yield maps, which were normalized and averaged through 
the 4 studied years to generate a yield potential variable, which was the main target of the random 
forest classification to identify the most relevant properties to describe the yield potential of the 
field. Random Forest classification was performed with and without using the DEM derivatives. 
  

Yield Mapping Yield mapping was performed through a John Deere harvester in the years of 
2017-2020. 

EC Scanners A contact EC scanner was used in this study, the scanning was performed with 
a swath width of 30 meters 

EM Scanners 2 Non contact EM scanning were performed during different time periods, the 
same branded scanner was used, but the scanning was performed by different 
operators. Swath width was 30 meters for both surveys. 

UAV-based DEM  A DJI Phantom 4 RTK was used to create a detailed DEM model of the area. 
The survey was performed after barley seeding, but before germination. 

Satellite Images ESA Sentinel 2. images were used to derive NDVI and MSBI indexes. NDVI 
indexes were derived from several periods, and were averaged after 
normalization of each image. 

Intensive soil survey  An intensive soil survey was performed, with soil profile descriptions in every 
¼ hectare to a a depth of 1 meter. For the profile descriptions the World 
Reference Base for Soil Resources (WRB, 2015) was used. Calcic, Cambic, 
Mollic, Ochric, Argic horizons were identified and described, along with colluvic 
soil material and surface soil horizon Munsell color, which was translated into 
RGB triplets for further analysis.  

Besides the field description laboratory analysis was performed for the 
following properties: pH (KCl), Organic matter, Plasticity, CaCO3 content, Soil 
Electrical Conductivity, Total soluble salts, P2O5 content, K2O content 
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Results 
The minimum, maximum and mean values along with the prediction variances of the Random 
Forest based property maps can be found in Table 2, along with some example property maps in 
Figure 3, respectively. 
 

Table 2. Minimum, maximum, mean values of predicted soil property maps and the Prediction Variance of the Random 
Forest model 

Property 
Min Max Mean Prediction 

Variance 

R1 (EM scanning) 
0 36,10766 21,29266 6,639361 

R2 (EM scanning) 
0 44,59372 25,50693 5,606096 

R3 (EM scanning) 
0 48,33708 24,12783 5,976343 

R4 (EM scanning) 
0 51,72342 28,84053 4,209277 

pH (KCl) 
5,4306 7,5745 7,044848 0,206307 

Plasticity 
31,32 39,85 35,4296 4,365624 

Total soluble salts 
0,02 0,0513 0,026935 8,25E-05 

CaCO3 (%) 
0,03 27,83 7,398576 24,22984 

Organic matter (%) 
0,9332 1,8898 1,477206 0,041335 

P2O5 (mg/kg) 
69,112 244,454 147,0772 1813,574 

K2O (mg/kg) 
120,9 297,81 196,0539 764,5057 

Mollic (binary) 
0 0,55 0,006439 0,005891 

Ochric (binary) 
0,07 1 0,837518 0,071142 

Argic (binary) 
0 1 0,352202 0,134097 

Calcic (binary) 
0,5 150 67,92322 1726,686 

Cambic (binary) 
0,1 1 0,916811 0,045467 

Colluvic (binary) 
0 0,95 0,127658 0,05465 

red (RGB triplet) 
91,9 201,52 113,4571 483,0083 

green (RGB triplet) 
64,57 190,15 85,38896 595,7352 

blue (RGB triplet) 
12,2 179,63 49,5157 869,4197 

Shallow EC (contact scanner) 
3,88537 161,4382 73,15394 101,3694 

Deep EC (contact scanner) 
134,5879 365,0972 271,1483 235,5286 
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Figure 3. Property maps of the study area (left to right and top to bottom: MSBI index with soil sampling points, probability 

of colluvic material (0-1), TWI, R2 value (EM scanning), Organic matter (%), Shallow EC (contact EC scanner)) 

 

The classification of the Random Forest regression model indicated that the DEM derived 
topographic properties had a large effect on the yield potential, since out of the 10 main splitting 
properties 4 were from this group (slope, TWI and Channel Network, Relative slope position). Soil 
classification or field survey related information were also among the top relevant properties with 
colluvic material, Calcic horizon and topsoil color, leaving K2O content and CaCO3 content the 
only laboratory measured data appearing as main classifier. Interestingly, either the soil scanner 
nor the satellite based properties appear among the top classifiers. 
In the classification scenario when Dem derivatives were left out of the training dataset, the top 
classifiers mentioned above, were completed pH, Ochric horizon, NDVI and MSBI. These results 
very well resonate with the results of the linear correlation where the above mentioned properties 
appear as the main correlating (negative or positive) properties. 

Summary 
At this stage of the analysis we have found that although all the methods have identified certain 
features on the field, many of these had no or minimal effect on the yield potential of the field 
zones, thus the usage of these tools or techniques have no or negative effect on the cropping 
system and on the environment. Modern soil classification diagnostic units, although in many 
cases neglected for PA systems, can provide a more detailed baseline information for decision 
support, through the aggregated soil chemical, physical and morphological information contained 
in one class. With modern digital soil mapping technologies and a custom made sampling 
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methodology these tools are comparable in speed and provide deeper knowledge on the field 
than the ‘modern’ quick survey techniques. Since precision agriculture is an intensively expanding 
market and is supposed to be one of the main tools for sustainable agriculture a broad validation 
of these tools should be performed to identify the soil and climatic conditions where these can be 
properly used with providing the required precision and reliability. 
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