Proceedings

Find matching any: Reset
Maja, J.M
Sanderson, J
Santana Neto, A.J
Majdi, M
Sørensen, C.G
Jens, M
Siegfried, J
Joseph, K
Shirzadi, A
Shannon, K
Ma, Y
Joseph, K
Akin, S
Myers, D.B
Mirzakhaninafchi, H
Mueller, D
Ahmad, A
Abdalla, A
Gu, H
Mangus, D.L
Joshi, D
Hillyer, C
Hatfield, J.L
Asido, S
Magalhaes, P.S
Joshi, R
Kudenov, M
Nascimento-Silva, K
Abdalla, K
Sanaei, A
Meon, S
Zhang, H
Khun, K
Khot, L.R
White, M
Hoffmann, W.C
Kwarteng, J.A
Stefanini, M
Silva, M.J
Scholz, O
Shearer, S
Susin, A
Singh, A
Eitelwein, M.T
Wells, D
Mulla, D
Add filter to result:
Authors
Liaghat, S
Mansor, S
Shafri, H
Meon, S
Ehsani, R
Azam, S
Noh, N
Majdi, M
Benjamin, D
Marie-France, D
Garcia, A.H
Rodrigues Júnior, F.H
Bastos, A.H
Magalhaes, P.S
Silva, M.J
Betz, A
Benny, H
Jens, M
Özyurtlu, M
Pflanz, M
Rachow-Autrum, T
Schischmanow, A
Scheele, M
Schrenk, J
Schrenk, L
Zude, M
Gebbers, R
Kremer, R.J
Kitchen, N.R
Sudduth, K.A
Myers, D.B
Khot, L.R
Ehsani, R
Albrigo, G
Campoy, J
Wellington, C
Swen, W
Camergo Neto, J
Myers, D.B
Kitchen, N.R
Sudduth, K.A
Leonard, B.J
Eitelwein, M.T
Molin, J.P
Spekken, M
Trevisan, R.G
Zhang, R
Chen, L
Yi, T
Guo, Y
Zhang, H
Bosompem, M
Kwarteng, J.A
Acquah, H.D
Mangus, D.L
Sharda, A
Siegfried, J
Khosla, R
Longchamps, L
Song, X
Yang, G
Ma, Y
Wang, R
Yang, C
Souza, W.J
Akune, V.S
Benez, S.H
Citon, L.C
Nakazawa, P.H
Santana Neto, A.J
Trevisan, R.G
Eitelwein, M.T
Colaço, A.F
Molin, J.P
Khalilian, A
Qiao, X
Payero, J.O
Maja, J.M
Privette, C.V
Han, Y.J
Shirzadi, A
Maharlooei, M
hassanijalilian, O
Bajwa, S
Howatt, K
Sivarajan, S
Nowatzki, J
Larson, J.A
Stefanini, M
Lambert, D.M
Yin, X
Boyer, C.N
Varco, J.J
Scharf , P.C
Tubaña, B.S
Dunn, D
Savoy, H.J
Buschermohle, M.J
Tyler, D.D
Souza, W.J
Benez, S.H
Nakazawa, P.H
Santana Neto, A.J
Citon, L.C
Akune, V.S
Sanches, G.M
Kolln, O.T
Franco, H.C
Magalhaes, P.S
Duft, D.G
Sanches, G.M
Amaral, L.R
Pitrat, T
Brasco, T
Magalhaes, P.S
Duft, D.G
Franco, H.C
Eitelwein, M.T
Trevisan, R.G
Colaço, A.F
Vargas, M.R
Molin, J.P
Scharf, P
Shannon, K
Sudduth, K
Kitchen, N
Tremblay, N
Khun, K
Vigneault, P
Bouroubi, M.Y
Cavayas, F
Codjia, C
Ferreyra, R
Applegate, D.B
Berger, A.W
Berne, D.T
Craker, B.E
Daggett, D.G
Gowler, A
Bullock, R.J
Haringx, S.C
Hillyer, C
Howatt, T
Nef, B.K
Rhea, S.T
Russo, J.M
Nieman, S.T
Sanders, P
Wilson, J.A
Wilson, J.W
Tevis, J.W
Stelford, M.W
Shearouse, T.W
Schultz, E.D
Reddy, L
Shannon, K
Maharlooei, M
Bajwa, S
Mireei, S.A
Shirzadi, A
Sivarajan, S
Berti, M
Nowatzki, J
Morris, T
Tremblay, N
Kyveryga, P.M
Clay, D.E
Murrell, S
Ciampitti, I
Thompson, L
Mueller, D
Seger, J
Bonfil, D.J
Mufradi, I
Asido, S
Long, D.S
Bonfil, D.J
Mufradi, I
Asido, S
Long, D.S
Lan, Y
Huang, Y
Martin, D.E
Hoffmann, W.C
Fritz, B.K
López, J.D
Sanaei, A
Galzki, J
Nelson, J
Mulla, D
Hatfield, J.L
Prueger, J.H
Hatfield, J.L
Kumar, S
Singh, M
Mirzakhaninafchi, H
Modi, R.U
Ali, M
Bhardwaj, M
Soni, R
Wiseman, L
Sanderson, J
Scholz, O
Uhrmann, F
Gerth, S
Pieger, K
Claußen, J
Trevisan, R.G
Eitelwein, M.T
Ferraz, M.N
Tavares, T.R
Molin, J.P
Neves, D.C
Villalobos, J.E
Perret, J.S
Abdalla, K
Fuentes, C.L
Rodriguez, J.C
Novais, W
Herrmann, I
Vosberg, S
Ravindran, P
Singh, A
Townsend, P
Conley, S
de Souza, M.R
Bertani, T.D
Parraga, A
Bredemeier, C
Trentin, C
Doering, D
Susin, A
Negreiros, M
Ferraz, M.N
Trevisan, R.G
Eitelwein, M.T
Molin, J
Karp, F.H
Khun, K
Vigneault, P
Fallon, E
Tremblay, N
Codjia, C
Cavayas, F
Colley III, R
Lin, Y
Fulton, J
Shearer, S
King, W
Dynes, R
Laurenson, S
Zydenbos, S
MacAuliffe, R
Taylor, A
Manning, M
Roberts, A
White, M
Fulton, J.P
Hawkins, E
Colley III, R
Port, K
Shearer, S
Klopfenstein, A
Thies, S
Clay, D.E
Bruggeman, S
Joshi, D
Clay, S
Miller, J
Peña, J
Melgar, J
de Castro, A
Maja, J
Nascimento-Silva, K
Gu, H
Guo, W
Ahmad, A
Aggarwal, V
Saraswat, D
El Gamal, A
Johal, G
Karn, R
Gu, H
Adedeji, O
Guo, W
Adedeji, O.I
Ghimire, B.P
Gu, H
Karn, R
Lin, Z
Guo, W
Siegfried, J
Khosla, R
Mandal, D
Yilma, W
Fulton, J.P
Hawkins, E
Shearer, S
Klopfenstein, A
Hartschuh, J
Custer, S
Scholz, O
Uhrmann, F
Weule, M
Meyer, T
Gilson, A
Makarov, J
Hansen, J
Henties, T
Rehman, T
Rahman, M
Ayipio, E
Lukwesa, D
Zheng, J
Wells, D
Syed, H.H
Ottley, C
Kudenov, M
Balint-Kurti, P
Dean, R
Williams, C
Vincent, G
Kudenov, M
Balint-Kurti, P
Dean, R
Williams, C.M
Jørgensen, R.N
Skovsen, S
Green, O
Sørensen, C.G
Joshi, R
Khosla, R
Mandal, D
Unruh, R
Admasu, W.A
Unruh, R
Admasu, W.A
Mandal, D
Joshi, R
Khosla, R
Karn, R
Adedeji, O
Ghimire, B.P
Abdalla, A
Sheng, V
Ritchie, G
Guo, W
Gilson, A
Meyer, L
Killer, A
Keil, F
Scholz, O
Kittemann, D
Noack, P
Pietrzyk, P
Paglia, C
Akin, S
Arnall, B
Derrick, J
Akin, S
Sharry, R
Arnall, B
Muvva, V
Mwunguzi, H
Pitla, S
Joseph, K
Gardezi, M
Walsh, O
Joshi, D
Kumari, S
Clay, D.E
Rathore, J
Topics
Precision Horticulture
Food Security and Precision Agriculture
Sensor Application in Managing In-season Crop Variability
Proximal Sensing in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Unmanned Aerial Systems
Profitability, Sustainability and Adoption
Remote Sensing Applications in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Decision Support Systems in Precision Agriculture
Big Data Mining & Statistical Issues in Precision Agriculture
Proximal Sensing in Precision Agriculture
Sensor Application in Managing In-season Crop Variability
Standards & Data Stewardship
Agricultural Education
Precision Management / Precision Conservation
Remote Sensing Application / Sensor Technology
Vegetative Indices in Crop Production
Remote Sensing for Nitrogen Management
Small Holders and Precision Agriculture
Precision Agriculture and Global Food Security
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision Crop Protection
Applications of Unmanned Aerial Systems
Site-Specific Nutrient, Lime and Seed Management
Site-Specific Pasture Management
On Farm Experimentation with Site-Specific Technologies
Applications of Unmanned Aerial Systems
In-Season Nitrogen Management
Robotics and Automation with Row and Horticultural Crops
Artificial Intelligence (AI) in Agriculture
Big Data, Data Mining and Deep Learning
In-Season Nitrogen Management
Drainage Optimization and Variable Rate Irrigation
Precision Agriculture and Global Food Security
Precision Horticulture
On Farm Experimentation with Site-Specific Technologies
Type
Poster
Oral
Year
2012
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results68 paper(s) found.

1. Early Detection of Oil Palm Fungal Disease Infestation Using A Mid-Infrared Spectroscopy Technique

Basal stem rot (BSR) caused by Ganoderma boninense is known as the most destructive disease of oil palm plantations in Southeast Asia. Ganoderma could potentially reduce the market share of palm oil for Malaysia. Currently Malaysia produces about 50% of the world’s supply of palm oil. Early, accurate, and non-destructive diagnosis of Ganoderma fungal infection is critical for management of this disease. Early disease management of Ganoderma could also prevent great losses in production and... S. Liaghat, S. Mansor, H. Shafri, S. Meon, R. Ehsani, S. Azam, N. Noh

2. Bayesian Methods for Predicting LAI and Soil Moisture

Crop models describe the growth and development of a crop interacting with soil, climate, and management... M. Majdi, D. Benjamin, D. Marie-france

3. Assembly of an Ultrasound Sensors System for Mapping of Sugar Cane Height

In Precision Agriculture, the use of sensors provides faster data collection on plant, soil, and climate, allowing collecting larger sample sets with better information quality. The objective of this study was the development of a system for plant height measurement in order to mapping of sugar cane crop, so that regions with plant growth variation and grow failures could be identified... A.H. Garcia, F.H. Rodrigues júnior, A.H. Bastos, P.S. Magalhaes, M.J. Silva

4. OptiThin - Precision Fruiticulture by Tree-Specific Mechanical Thinning

Apple cultivars show biennial fluctuations in yields (alternate bearing). The phenomenon is induced by reduced yields in one year due to freeze damage, low pollination rate or other reasons. Consequently, trees develop many flower buds that blossom in the following year. The many flowers lead to a high number of small fruits that won’t be accepted on the market. Endogenous factors (phytohormones and carbohydrate allocation) subsequently establish the biennial cycle. The alternate bearing... A. Betz, H. Benny, M. Jens, M. Özyurtlu, M. Pflanz, T. Rachow-autrum, A. Schischmanow, M. Scheele, J. Schrenk, L. Schrenk, M. Zude, R. Gebbers

5. Estimating Soil Quality Indicators with Diffuse Reflectance Spectroscopy

Knowledge of within-field spatial variability in soil quality indicators is important to assess the impact of site-specific management on the soil. Standard methods for measuring these properties require considerable time and expense, so sensor-based approaches would be... R.J. Kremer, N.R. Kitchen, K.A. Sudduth, D.B. Myers

6. Validation of Variable Rate Spray Decision Rules in Intricate Micro-Metrological Conditions

This study evaluated validity of modified spray decision rules formed to operate axial fan airblast sprayer retrofitted for use in citrus production. The sprayer was field tested in a spraying... L.R. Khot, R. Ehsani, G. Albrigo, J. campoy, C. Wellington, W. Swen, J. Camergo neto

7. Physiological Repsonses Of Corn To Variable Seeding Rates In Landscape-Scale Strip Trials

Many producers now have the capability to vary seeding rates on-the-go. Methods are needed to develop variable rate seeding approaches in corn but require an understanding of the physiological response of corn to soil-landscape and weather conditions. Interplant competition fundamentally differs at varied seeding rate and may affect corn leaf area, transpiration, plant morphology, and assimilate partitioning. Optimizing these physiological effects with optimal seeding rates in a site-specific... D.B. Myers, N.R. Kitchen, K.A. Sudduth, B.J. Leonard

8. Assessing Definition Of Management Zones Trough Yield Maps

Yield mapping is one of the core tools of precision agriculture, showing the result of combined growing factors. In a series of yield maps collected along seasons it is possible to observe not only the spatial distribution of the productivity but also its spatial consistency among different seasons. This work proposes the study of distinct methods to analyze yield stability in grain crops regarding its potential for defining management zones from a historical sequence of yield maps. Two methods... M.T. Eitelwein, J.P. Molin, M. Spekken, R.G. Trevisan

9. Development of a PWM Precision Spraying System for Unmanned Helicopter

Application of protection materials is a crucial component in the high productivity of agriculture. Motivated by the needs of aerial precision application, in this paper we present a pulse width modulation (PWM) based precision spraying system for unmanned helicopter. The system is composed of the tank, pipelines, pump, nozzles and the automatic control unit. The system can spray with a constant rate automatically when the speed of the UAV fluctuates between 1 m/s to 8 m/s. The application rate... R. Zhang, L. Chen, T. Yi, Y. Guo, H. Zhang

10. Determinants of Ex-ante Adoption of Precision Agriculture Technologies by Cocoa Farmers in Ghana

The study was to identify the best predictors of cocoa Farmers willingness to adopt future Precision Agriculture Technology (PAT) Development in Ghana. Correlational research design was used. The target population was all cocoa farmers who benefited from Cocoa High Technology Programme (an initiative of distributing free fertilizer by government to cocoa farmers) in Ghana. Multistage sampling technique was used to select 422 out of 400,000 cocoa farmers in the six (6) out of the seven (7) cocoa... M. Bosompem, J.A. Kwarteng, H.D. Acquah

11. Selection and Utility of Uncooled Thermal Cameras for Spatial Crop Temperature Measurement Within Precision Agriculture

Since previous research used local, single-point measurements to indicate crop water stress, thermography is presented as a technique capable of measuring spatial temperatures supporting its use for monitoring crop water stress. This study investigated measurement accuracy of uncooled thermal cameras under strict environmental conditions, developed hardware and software to implement uncooled thermal cameras and quantified intrinsic properties that impact measurement accuracy and repeatability.... D.L. Mangus, A. Sharda

12. Spectral Vegetation Indices to Quantify In-field Soil Moisture Variability

Agriculture is the largest consumer of water globally. As pressure on available water resources increases, the need to exploit technology in order to produce more food with less water becomes crucial. The technological hardware requisite for precise water delivery methods such as variable rate irrigation is commercially available. Despite that, techniques to formulate a timely, accurate prescription for those systems are inadequate. Spectral vegetation indices, especially Normalized Difference... J. Siegfried, R. Khosla, L. Longchamps

13. Spatial and Temporal Variation of Soil Nitrogen Within Winter Wheat Growth Season

This study aims to explore the spatial and temporal variation characteristics of soil ammonium nitrogen and nitrate nitrogen within winter wheat growth season. A nitrogen-rich strip fertilizer experiment with eight different treatments was conducted in 2014. Soil nitrogen samples of 20-30cm depth near wheat root were collected by in-situ Macro Rhizon soil solution collector then soil ammonium nitrogen and nitrate nitrogen content determined by SEAL AutoAnalyzer3 instrument. Classical statistics... X. Song, G. Yang, Y. Ma, R. Wang, C. Yang

14. Agronomic Characteristics of Green Corn and Correlations with Productivity for the Establishment of Management Zones in Vale Do Ribeira, SP, Brazil

In Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, V.S. Akune, S.H. Benez, L.C. Citon, P.H. Nakazawa, A.J. Santana neto

15. Sources of Information to Delineate Management Zones for Cotton

Cotton in Brazil is an input-intensive crop. Due to its cultivation in large fields, the spatial variability takes an important role in the management actions. Yield maps are a prime information to guide site-specific practices including delineation of management zones (MZ), but its adoption still faces big challenges. Other information such as historical satellite imagery or soil electrical conductivity might help delineating MZ as well as predicting crop performance. The objective of this work... R.G. Trevisan, M.T. Eitelwein, A.F. Colaço, J.P. Molin

16. Utilizing Space-based Technology for Cotton Irrigation Scheduling

Accurate soil moisture content measurements are vital to precision irrigation management. Electromagnetic sensors such as capacitance and time domain reflectometry have been widely used for measuring soil moisture content for decades. However, to estimate average soil moisture content over a large area, a number of ground-based in-situ sensors would need to be installed, which would be expensive and labor intensive. Remote sensing using the microwave spectrum (such as GPS signals) has been used... A. Khalilian, X. Qiao, J.O. Payero, J.M. Maja, C.V. Privette, Y.J. Han

17. Greenhouse Study to Identify Glyphosate-resistant Weeds Based on Canopy Temperature

Development of herbicide-resistant crops has resulted in significant positive changes to agronomic practices, while repeated and intensive use of herbicides with the same mechanisms of action has caused the development of herbicide-resistant weeds. As of 2015, 35 weed species are reported to be resistant to glyphosate worldwide. A greenhouse study was conducted to identify characteristics which can be helpful in field mapping of glyphosate resistant weeds by using UAV imagery. The experiment included... A. Shirzadi, M. Maharlooei, O. Hassanijalilian, S. Bajwa, K. Howatt, S. Sivarajan, J. Nowatzki

18. Net Returns and Production Use Efficiency for Optical Sensing and Variable Rate Nitrogen Technologies in Cotton Production

This research evaluated the profitability and N use efficiency of real time on-the-go optical sensing measurements (OPM) and variable-rate technologies (VRT) to manage spatial variability in cotton production in the Mississippi River Basin states of Louisiana, Mississippi, Missouri, and Tennessee. Two forms of OPM and VRT and the existing farmer practice (FP) were used to determine N fertilizer rates applied to cotton on farm fields in the four states. Changes in yields and N rates due to OPM... J.A. Larson, M. Stefanini, D.M. Lambert, X. Yin, C.N. Boyer, J.J. Varco, P.C. Scharf , B.S. Tubaña, D. Dunn, H.J. Savoy, M.J. Buschermohle, D.D. Tyler

19. Spatial Variability and Correlations Between Soil Attributes and Productivity of Green Corn Crop

In Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, S.H. Benez, P.H. Nakazawa, A.J. Santana neto, L.C. Citon, V.S. Akune

20. Translating Data into Knowledge - Precision Agriculture Database in a Sugarcane Production.

The advent of Information Technology in agriculture, surveying and data collection became a simple task, starting the era of "Big Data" in agricultural production. Currently, a large volume of data and information associated with the plant, soil and climate are collected quick and easily. These factors influence productivity, operating costs, investments and environment impacts. However, a major challenge for this area is the transformation of data and information... G.M. Sanches, O.T. Kolln, H.C. Franco, P.S. Magalhaes, D.G. Duft

21. Apparent Electrical Conductivity Sensors and Their Relationship with Soil Properties in Sugarcane Fields

One important tool within the technological precision agriculture (PA) package are the apparent electrical conductivity (ECa) sensors. This kind of sensor shows the ability in mapping soil physicochemical variability quickly, with high resolution and at low cost. However, the adoption of this technology in Brazil is not usual, particularly on sugarcane fields. A major issue for farmers is the applicability of ECa, how to convert ECa data in knowledge that may assist the producer in decision-making... G.M. Sanches, L.R. Amaral, T. Pitrat, T. Brasco, P.S. Magalhaes, D.G. Duft, H.C. Franco

22. On-the-go Measurements of pH in Tropical Soil

The objective of this study was to assess the performance of a mobile sensor platform with ion-selective antimony electrodes (ISE) to determine pH on-the-go in a Brazilian tropical soil. The field experiments were carried out in a Cambisol in Piracicaba-SP, Brazil. To create pH variability, increasing doses (0, 1, 3, 5, 7 and 9 Mg ha-1) of lime were added on the experimental plots (25 x 10 m) one year before the data acquisitions. To estimate soil pH levels we used a Mobile Sensor Platform... M.T. Eitelwein, R.G. Trevisan, A.F. Colaço, M.R. Vargas, J.P. Molin

23. Sensor-based Nitrogen Applications Out-performed Producer-chosen Rates for Corn in On-farm Demonstrations

Optimal nitrogen fertilizer rate for corn can vary substantially within and among fields.  Current N management practices do not address this variability.  Crop reflectance sensors offer the potential to diagnose crop N need and control N application rates at a fine spatial scale.  Our objective was to evaluate the performance of sensor-based variable-rate N applications to corn, relative to constant N rates chosen by the producer.  Fifty-five replicated on-farm demonstrations... P. Scharf, K. Shannon, K. Sudduth, N. Kitchen

24. Comparative Benefits of Drone Imagery for Nitrogen Status Determination in Corn

Remotely sensed vegetation data provide an effective means of measuring the spatial variability of nitrogen and therefore of managing applications by taking intrafield variations into account. Satellites, drones and sensors mounted on agricultural machinery are all technologies that can be used for this purpose. Although a drone (or unmanned aerial vehicle [UAV]) can produce very high-resolution images, the comparative advantages of this type of imagery have not been demonstrated. The goal of... N. Tremblay, K. Khun, P. Vigneault, M.Y. Bouroubi, F. Cavayas, C. Codjia

25. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway identified... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

26. Precision Farming Basics Manual - a Comprehensive Updated Textbook for Teaching and Extension Efforts

Today precision agricultural technologies are limited by the lack of a workforce that is technology literate, creative, innovative, fully trained in their discipline, able to utilize and interpret information gained from information-age technologies to make smart management decisions, and have the capacity to convert locally collected information into practical solutions. As part of a grant entitled Precision Farming Workforce Development:  Standards, Working Groups, and Experimental Learning... K. Shannon

27. Vis/NIR Spectroscopy to Estimate Crude Protein (CP) in Alfalfa Crop: Feasibility Study

The fast and reliable quality determination of alfalfa crop is of interest for producers to make management decisions, the dealers to determine the price, and the dairy producers for livestock management. In this study, the crude protein (CP), one of the main quality indices of alfalfa, was estimated using the visible and near-infrared (Vis/NIR) spectroscopy. A total of 68 samples from various variety trials of alfalfa crop were collected under the irrigated and rainfed conditions. The diffuse... M. Maharlooei, S. Bajwa, S.A. Mireei, A. Shirzadi, S. Sivarajan, M. Berti, J. Nowatzki

28. Rationale for and Benefits of a Community for On-Farm Data Sharing

Most data sets for evaluating crop production practices have too few locations and years to create reliable probabilities from predictive analytical analyses for the success of the practices. Yield monitors on combines have the potential to enable networks of farmers in collaboration with scientists and farm advisors to collect sufficient data for calculation of more reliable guidelines for crop production showing the probabilities that new or existing practices will improve the efficiency of... T. Morris, N. Tremblay, P.M. Kyveryga, D.E. Clay, S. Murrell, I. Ciampitti, L. Thompson, D. Mueller, J. Seger

29. Precision Nitrogen Management Based on Nitrogen Removal in Rainfed Wheat

Growers of hard red spring wheat may capture price premiums for maximizing the protein concentration of their grain. Nitrogen (N) nutrition adequacy is crucial to achieving high grain protein concentration. The objective of this study was to determine the usefulness of N removal maps by comparing grain protein, yields, and dollar returns obtained from this precision N management approach with that from conventional uniform N management. Strip plot experiments were designed to compare spatially... D.J. Bonfil, I. Mufradi, S. Asido, D.S. Long

30. On-combine Near Infrared Spectroscopy Applied to Prediction of Grain Test Weight

Whole grain near infrared (NIR) spectroscopy is a widely accepted method for analysis of the protein and moisture contents of grain, but is seldom applied to predict test weight. Test weight is a widely used specification for grading of wheat and predictor of flour yield. The objective of this study was to determine whether NIR spectroscopy could be used for measuring the test weight of grain. Reference grain samples of hard red spring wheat were obtained from dryland fields in the semiarid Negev... D.J. Bonfil, I. Mufradi, S. Asido, D.S. Long

31. Development of an Airborne Remote Sensing System for Aerial Applicators

An airborne remote sensing system was developed and tested for recording aerial images of field crops, which were analyzed for variations of crop health or pest infestation. The multicomponent system consists of a multi-spectral camera system, a camera control system, and a radiometer for normalizing images. To overcome the difficulties currently associated with correlating imagery data with what is actually occurring on the ground (a process known as ground truthing); a hyperspectral reflectance... Y. Lan, Y. Huang, D.E. Martin, W.C. Hoffmann, B.K. Fritz, J.D. López

32. Using Pricise Gps/gis Based Barley Yield Maps to Predict Site-specific Phosphorus Requirements

Three fundamental stages and technologies as main parts of a precision farming project should be considered precisely. These are access to actual multi- dimensional variability detail or variable description on farms, creating a suitable variable-rate technology, and finally providing a decision support system. Some results of a long term practical research conducted by the author in Upon-Tyne Newcastle University of UK for reliable yield monitoring and mapping were utilised to prepare this paper. The... A. Sanaei

33. Identifying Critical Landscape Areas for Precision Conservation in the Minnesota River Basin

The Minnesota River Basin generates a disproportionately high amount of total suspended sediments to the Upper Mississippi River Basin. Many reaches in the Minnesota River Basin have impaired water quality due to turbidity. Critical landscapes can be divided into depressional areas, riparian areas, highly erodible lands, and areas susceptible to ephemeral gullies or ravines. Geographic Information Systems (GIS) were utilized, and terrain analysis was conducted using digital elevation models in... J. Galzki, J. Nelson, D. Mulla

34. Seasonal Patterns of Vegetative Indices Over Cropping Systems

Remote sensing of reflectance in the visible and near-infrared portions of the spectrum has been used for agronomic applications for a number of years. The combination of different wavelengths into vegetative indices have proven useful for a variety of applications that range from biomass, leaf area, leaf chlorophyll, yield, crop residue, and crop damage. To help refine our understanding of vegetative indices studies were conducted on corn (Zea mays L.), soybean (Glycine max (L.) Merr.), wheat... J.L. Hatfield, J.H. Prueger

35. Spatial Patterns of Nitrogen Response Within Corn Production Fields

Corn (Zea mays L.) yield response to nitrogen (N) application is critical to being able to develop management practices that reduce N application or improve N use efficiency. Nitrogen rate studies have been conducted within small plots; however, there have been few field scale evaluations. This study was designed to evaluate N response across 14 corn fields in central Iowa using different rates of N applied in strips across fields. These fields ranged in size from 15 to 130 ha with N... J.L. Hatfield

36. Practical and Affordable Technologies for Precision Agriculture in Small Fields: Present Status and Scope in India

The objective of this review paper is to find out practical and affordable precision agriculture(PA) technologies present status and scope in India that are suitable for small fields. The judicious use of inputs like water, fertilizers, herbicides, pesticides and better management of farm equipments will increase the net profit for farmers. The important components of PA in India which are being used for small lands are Geographic Information System(GIS), laser land leveler, leaf color chart,... S. Kumar, M. Singh, H. Mirzakhaninafchi, R.U. Modi, M. Ali, M. Bhardwaj, R. Soni

37. Realising the Full Potential of Precision Agriculture: Encouraging Farmer 'Buy-in' by Building Trust in Data Sharing

Uncertainty around the ownership, privacy and security of farm data are most commonly the reasons cited for farmer’s reluctance to “buy-in” to big data in agriculture. Evidence provided to the recent US Committee on Commerce, Science, and Transportation Subcommittee on Consumer Protections, Product Safety, Insurance, and Data Security, United States Senate Technology in Agriculture: Data Driven Farming (Nov 2017) highlighted that “data ownership, and related... L. Wiseman, J. Sanderson

38. A Comparison of Three-Dimensional Data Acquisition Methods for Phenotyping Applications

Currently Phenotyping is primarily performed using two-dimensional imaging techniques. While this yields interesting data about a plant, a lot of information is lost using regular cameras. Since a plant is three-dimensional, the use of dedicated 3D-imaging sensors provides a much more complete insight into the phenotype of the plant. Different methods for 3D-data acquisition are available, each with their inherent advantages and disadvantages. These have to be addressed depending on the particular... O. Scholz, F. Uhrmann, S. Gerth, K. Pieger, J. Claußen

39. Optimum Spatial Resolution for Precision Weed Management

The occurrence and number of herbicide-resistant weeds in the world has increased in recent years. Controlling these weeds becomes more difficult and raises production costs. Precision spraying technologies have been developed to overcome this challenge. However, these systems still have relatively high acquisition cost, requiring studies of the relation between the spatial distribution of weeds and the economically optimum spatial resolution of the control method. In this context, the objective... R.G. Trevisan, M.T. Eitelwein, M.N. Ferraz, T.R. Tavares, J.P. Molin, D.C. Neves

40. Delineation of Site-Specific Nutrient Management Zones to Optimize Rice Production Using Proximal Soil Sensing and Multispectral Imaging

Evaluating nutrient uptake and site-specific nutrient management zones in rice in Costa Rica from plant tissue and soil sampling is expensive because of the time and labor involved.  In this project, a range of measurement techniques were implemented at different vintage points (soil, plant and UAVs) in order to generate and compare nutrient management information.  More precisely, delineation of site-specific nutrient management zones were determined using 1) georeferenced soil/tissue... J.E. Villalobos, J.S. Perret, K. Abdalla, C.L. Fuentes, J.C. Rodriguez, W. Novais

41. Exploring Tractor Mounted Hyperspectral System Ability to Detect Sudden Death Syndrome Infection and Assess Yield in Soybean

Pre-visual detection of crop disease is critical for both food and economic security. The sudden death syndrome (SDS) in soybeans, caused by Fusarium virguliforme (Fv), induces 100 million US$ crop loss, per year, in the US alone. Field-based spectroscopic remote sensing offers a method to enable timely detection, but still requires appropriate instrumentation and testing. Soybean plants were measured at canopy level over a course of a growing season to assess the capacity of spectral measurements... I. Herrmann, S. Vosberg, P. Ravindran, A. Singh, P. Townsend, S. Conley

42. Wheat Biomass Estimation Using Visible Aerial Images and Artificial Neural Network

In this study, visible RGB-based vegetation indices (VIs) from UAV high spatial resolution (1.9 cm) remote sensing images were used for modeling shoot biomass of two Brazilian wheat varieties (TBIO Toruk and BRS Parrudo). The approach consists of a combination of Artificial Neural Network (ANN) with several Vegetation Indices to model the measured crop biomass at different growth stages. Several vegetation indices were implemented: NGRDI (Normalized Green-Red Difference Index), CIVE (Color Index... M.R. De souza, T.D. Bertani, A. Parraga, C. Bredemeier, C. Trentin, D. Doering, A. Susin, M. Negreiros

43. Soybean Plant Phenotyping Using Low-Cost Sensors

Plant phenotyping techniques are important to present the performance of a crop and it interaction with the environment. The phenotype information is important for plant breeders to analyze and understand the plant responses from the ambient conditions and the inputs offered for it. However, for conclusive analysis it is necessary a large number of individuals. Thus, phenotyping is the bottleneck of plant breeding, a consequence of the labor intensive and costly nature of the classical phenotyping.... M.N. Ferraz, R.G. Trevisan, M.T. Eitelwein, J. Molin, F.H. Karp

44. Estimating Corn Biomass from RGB Images Acquired with an Unmanned Aerial Vehicle

Above-ground biomass, along with chlorophyll content and leaf area index (LAI), is a key biophysical parameter for crop monitoring. Being able to estimate biomass variations within a field is critical to the deployment of precision farming approaches such as variable nitrogen applications. With unprecedented flexibility, Unmanned Aerial Vehicles (UAVs) allow image acquisition at very high spatial resolution and short revisit time. Accordingly, there has been an increasing interest in... K. Khun, P. Vigneault, E. Fallon, N. Tremblay, C. Codjia, F. Cavayas

45. Development of a Graphical User Interface for Spinner-Disc Spreader Calibration and Spread Uniformity Assessment

Broadcast fertilizer distribution through spinner-disc spreaders remain the most cost-effective, and least time consuming process to apply the needed soil amendments for the next crop. Spreaders currently available to producers enable them to apply a variety of granular products at varying rates, blends, and swath widths. In order to uniformly apply granular fertilizer or lime, the spreader should be calibrated by standard pan testing with any change in spreader settings, application rate, or... R. Colley iii, Y. Lin, J. Fulton, S. Shearer

46. Through the Grass Ceiling: Using Multiple Data Sources on Intra-Field Variability to Reset Expectations of Pasture Production and Farm Profitability

Intra-field variability has received much attention in arable and horticultural contexts. It has resulted in increased profitability as well as reduced environmental footprint. However, in a pastoral context, the value of understanding intra-field variability has not been widely appreciated. In this programme, we used available technologies to develop multiple data layers on multiple fields within a dairy farm. This farm was selected as it was already performing at a high level, with well-developed... W. King, R. Dynes, S. Laurenson, S. Zydenbos, R. Macauliffe, A. Taylor, M. Manning, A. Roberts, M. White

47. eFields – An On-Farm Research Network to Inform Farm Recommendations

On-farm research has been traditionally used to provide local, field-scale information about agronomic practices. Farmers tend to have more confidence in on-farm research results because they are perceived to be more relevant to their farm operations compared to small plot research results. In recent years, more farmers have been conducting on-farm studies to help evaluate practices and input decisions.  Recent advances in precision agriculture technologies have stream-lined the on-farm... J.P. Fulton, E. Hawkins, R. Colley iii, K. Port, S. Shearer, A. Klopfenstein

48. Precision Fall Urea Fertilizer Applications: Timing Impact on Carbon Dioxide, Ammonia Volatilization and Nitrous Oxide Emissions

To minimize ammonia (NH3) volatilization and nitrous oxide (N2O) emissions from fall applied fertilizer, it is generally recommended to not apply the fertilizer until the soil temperature decreases below 10 C. However, this recommendation is not based on detailed measurements of NH3and N2O emissions. The objective of this study was to determine the influence of fertilizer application timing on nitrous oxide, carbon dioxide, and ammonia volatilization emissions.  Nitrogen fertilizer was... S. Thies, D.E. Clay, S. Bruggeman, D. Joshi, S. Clay, J. Miller

49. UAV-based Hyperspectral Monitoring of Peach Trees As Affected by Silicon Applications and Water Stress Status

Previous research has shown that the application of reduced doses of Silicon (Si) improves crop tolerance to water stress, which is common in commercial young peach trees because irrigation is not usually applied during their first two years. In this study, aerial images were used to monitor the impact of different Si and water treatments on the hyperspectral response of peach trees. An experiment with 60 young (under 1 year old) peach trees located at the Musser Fruit Research Center (Seneca,... J. Peña, J. Melgar, A. De castro, J. Maja, K. Nascimento-silva

50. Integration of Unmanned Aerial Systems Images and Yield Monitor in Improving Cotton Yield Estimation

The yield monitor is one of the most adopted precision agriculture technologies because it generates dense yield data to quantify the spatial variability of crop yield as a basis for site-specific management. However, yield monitor data has various errors that prevent proper interpretation and precise field management. The objective of this study was to evaluate the application of unmanned aerial systems (UAS) images in improving cotton yield monitor data. The study was conducted in a dryland... H. Gu, W. Guo

51. Deep Learning-Based Corn Disease Tracking Using RTK Geolocated UAS Imagery

Deep learning-based solutions for precision agriculture have achieved promising results in recent times. Deep learning has been used to accurately classify different disease types and disease severity estimation as an initial stage for developing robust disease management systems. However, tracking the spread of diseases, identifying disease hot spots within cornfields, and notifying farmers using deep learning and UAS imagery remains a critical research gap. Therefore, in this study, high resolution,... A. Ahmad, V. Aggarwal, D. Saraswat, A. El gamal, G. Johal

52. Evaluation of Unmanned Aerial Vehicle Images in Estimating Cotton Nitrogen Content

Estimating crop nitrogen content is a critical step for optimizing nitrogen fertilizer application. The objective of this study was to evaluate the application of UAV images in estimating cotton (Gossypium hirsutum L.) N content. This study was conducted in a dryland cotton field in Garza County, Texas, in 2020. The experiment was implemented as a randomized complete block design with three N rates of 0, 34, and 67 kg N ha-1. A RedEdge multispectral sensor was used to acquire... R. Karn, H. Gu, O. Adedeji, W. Guo

53. Estimation of Cotton Biomass Using Unmanned Aerial Systems and Satellite-based Remote Sensing

Satellite and unmanned aerial system (UAS) images are effective in monitoring crop growth at various spatial, temporal, and spectral scales. The objective of the study was to estimate cotton biomass at different growth stages using vegetation indices (VIs) derived from UAS and satellite images. This research was conducted in a cotton field in Hale County, Texas, in 2021. Data collected include 54 plant samples at different locations for three dates of the growing season. Multispectral images from... O.I. Adedeji, B.P. Ghimire, H. Gu, R. Karn, Z. Lin, W. Guo

54. Enhancing Spatial Resolution of Maize Grain Yield Data

Grain yield data is frequently used for precision agriculture management purposes and as a parameter for evaluating agronomy experiments, but unexpected challenges sometimes interfere with harvest plans or cause total losses. The spatial detail of modern grain yield monitoring data is also limited by combine header width, which could be nearly 14 m in some crops.  Remote sensing data, such as multispectral imagery collected via satellite and unmanned aerial systems (UAS), could be used to... J. Siegfried, R. Khosla, D. Mandal, W. Yilma

55. Nitrogen Placement Considerations for Maize Production in the Eastern US Cornbelt

Proper fertilizer placement is essential to optimize crop performance and amount of applied nitrogen (N) along with crop yield potential. There exists several practices currently used in both research within farming operations on how and when to apply N to maize (Zea mays L). Split applications of N in Ohio is popular with farmers and provides an economic benefit but more recently some farmers have been using mid- and late-season N fertilizer applications for their maize production. ... J.P. Fulton, E. Hawkins, S. Shearer, A. Klopfenstein, J. Hartschuh, S. Custer

56. Creating a Comprehensive Software Framework for Sensor-driven Precision Agriculture

Robots and GPS-guided tractors are the backbone of smart farming and precision agriculture. Many companies and vendors contribute to the market, each offering their own customized solutions for common tasks. These developments are often based on vendor-specific, proprietary components, protocols and software. Many small companies that produce sensors, actuators or software for niche applications could contribute their expertise to the global efforts of creating smart farming solutions, if their... O. Scholz, F. Uhrmann, M. Weule, T. Meyer, A. Gilson, J. Makarov, J. Hansen, T. Henties

57. A High-throughput Phenotyping System Evaluating Salt Stress Tolerance in Kale Plants Cultivated in Aquaponics Environments

Monitoring plant growth in a controlled environment is crucial to make informed decisions for various management practices such as fertilization, weed control, and harvesting. Agronomic, physiological, and architectural traits in kale plants (Brassica oleracea) are important to producers, breeders, and researchers for assessing the performance of the plants under biotic and abiotic stresses.  Traditionally, architectural, and morphological traits have been used to monitor plant growth. However,... T. Rehman, M. Rahman, E. Ayipio, D. Lukwesa, J. Zheng, D. Wells, H.H. Syed

58. Automated Southern Leaf Blight Severity Grading of Corn Leaves in RGB Field Imagery

Plant stress phenotyping research has progressively addressed approaches for stress quantification. Deep learning techniques provide a means to develop objective and automated methods for identifying abiotic and biotic stress experienced in an uncontrolled environment by plants comparable to the traditional visual assessment conducted by an expert rater. This work demonstrates a computational pipeline capable of estimating the disease severity caused by southern corn leaf blight in images of field-grown... C. Ottley, M. Kudenov, P. Balint-kurti, R. Dean, C. Williams

59. Utilizing Hyperspectral Field Imagery for Accurate Southern Leaf Blight Severity Grading in Corn

Crop disease detection using traditional scouting and visual inspection approaches can be laborious and time-consuming. Timely detection of disease and its severity over large spatial regions is critical for minimizing significant yield losses. Hyperspectral imagery has been demonstrated as a useful tool for a broad assessment of crop health.  The use of spectral bands from hyperspectral data to predict disease severity and progression has been shown to have the capability of enhancing early... G. Vincent, M. Kudenov, P. Balint-kurti, R. Dean, C.M. Williams

60. Enhancing Precision Agriculture Through Dual Weed Mapping: Delineating Inter and Intra-row Weed Populations for Optimized Crop Protection

In the field of precision agriculture, effective management of weed populations is essential for optimizing crop yield and health. This paper presents an innovative approach to weed management by employing dual weed mapping techniques that differentiate between inter-row and intra-row weed populations. Utilizing advanced imaging and data analysis of CropEye images collected by the Robotti robot from AgroIntelli (AgroIntelli A/S, Aarhus, Denmark), we have developed methods to generate distinct... R.N. Jørgensen, S. Skovsen, O. Green, C.G. Sørensen

61. Delineation of Site-Specific Management Zones using Sensor-based Data for Precision N management

Nitrogen is a critical nutrient influencing crop yield, but the common practice of uniform application of nitrogen fertilizer across a field often results in spatially variable nitrogen availability for the crop, leading to over-application in some areas and under-application in others. This imbalance can cause economic losses and significant environmental issues. Precision nitrogen application involves application of N fertilizers based on soil conditions and crop requirements. One approach for... R. Joshi, R. Khosla, D. Mandal, R. Unruh, W.A. Admasu

62. Delineating Dynamic Variable Rate Irrigation Management Zones

Agriculture irrigation strategies have traditionally been made without accounting for the natural small-scale variability in the field, leading to uniform applications that often over-irrigate parts of the field that do not need as much water. The future success of irrigated agriculture depends on advancements in the capability to account for and leverage the natural variability in croplands for optimum irrigation management both in space and time. Variable Rate Irrigation (VRI) management offers... R. Unruh, W.A. Yilma, D. Mandal, R. Joshi, R. Khosla

63. Within Field Cotton Yield Prediction Using Temporal Satellite Imagery Combined with Deep Learning

Crop yield prediction at the field scale plays a pivotal role in enhancing agricultural management, a vital component in addressing global food security challenges. Regional or county-level data, while valuable for broader agricultural planning, often lacks the precision required by farmers for effective and timely field management. The primary obstacle in utilizing satellite imagery to forecast crop yields at the field level lies in its low temporal and spatial resolutions. This study aims to... R. Karn, O. Adedeji, B.P. Ghimire, A. Abdalla, V. Sheng, G. Ritchie, W. Guo

64. Cherry Yield Forecast: Harvest Prediction for Individual Sweet Cherry Trees

Digitalization continues to transform the agricultural sector as a whole and also affects specific niches like horticulture. Particularly in fruit and wine production, the focus is on the application of sensor systems and data analysis aiming at automated detection of drought stress or pests in vineyards or orchards.  As part of the  “For5G” project, we are developing an end-to-end methodology for the creation of digital twins of fruit trees, with a strong focus... A. Gilson, L. Meyer, A. Killer, F. Keil, O. Scholz, D. Kittemann, P. Noack, P. Pietrzyk, C. Paglia

65. The Evaluation of Spatial Response to Potassium in Soybeans

In agriculture, the nutrients that are in the largest demand are nitrogen (N), phosphorus (P), and potassium (K), as product demand increases  so does demand for fertilizers. In the case of potassium, most soils can provide potassium in amounts that exceed crop demand; however the potassium within the soil is not always readily available to the crop, this leads to producers apply potassium to their crops even though soil tests suggests otherwise. One such crop where potassium is in demand... S. Akin, B. Arnall

66. Influence of Potassium Variability on Soybean Yield

Due to its role as a plant essential nutrient, Potassium (K) serves as a fundamental component for plant growth. Soybeans are heavily reliant upon this nutrient for root growth and the production of pods, so much so that after nitrogen, potassium is the second most in-demand nutrient. Much of the overall soybean crop grown in Oklahoma is not managed with the fertility of K directly in mind. However, as the potential and expectation for greater yield increases, so does interest from producers... J. Derrick, S. Akin, R. Sharry, B. Arnall

67. Implementation of Autonomous Material Re-filling Using Customized UAV for Autonomous Planting Operations

This project introduces a groundbreaking use case for customized Unmanned Aerial Vehicles (UAVs) in precision agriculture, focused on achieving holistic autonomy in agricultural operations through multi-robot collaboration.  Currently, commercially available drones for agriculture are restrictive in achieving collaborative autonomy with the growing number of unmanned ground robots, limiting their use to narrow and specific tasks.  The advanced payload capacities of multi-rotor UAVs,... V. Muvva, H. Mwunguzi, S. Pitla, K. Joseph

68. Predicting Soybean Yield Using Remote Sensing and a Machine Learning Model

Soybean (Glycine max L.), a nutrient-rich legume crop, is an important resource for both livestock feed and human dietary needs. Accurate preharvest yield prediction of soybeans can help optimize harvesting strategies, enhance profitability, and improve sustainability. Soybean yield estimation is inherently complex because yield is influenced by many factors including growth patterns, varying crop physiological traits, soil properties, within-field variability, and weather conditions. The objective... M. Gardezi, O. Walsh, D. Joshi, S. Kumari, D.E. Clay, J. Rathore