Proceedings

Find matching any: Reset
Filippetti, I
Da Costa, J
Robbins, J
Add filter to result:
Authors
She, Y
Ehsani, R
Robbins, J
Owen, J
Leiva, J.N
Abdelghafour, F.Y
Rosu, R
Keresztes, B
Germain, C
Da Costa, J
Keresztes, B
Da Costa, J
Randriamanga, D
Germain, C
Abdelghafour, F
Allegro, G
Martelli, R
Valentini, G
Pastore, C
Mazzoleni, R
Pezzi, F
Filippetti, I
Ali, A
Mazzoleni, R
Vinzio, F
Emamalizadeh, S
Allegro, G
Filippetti, I
Baroni, G
Topics
Precision Horticulture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision Horticulture
Precision Agriculture for Sustainability and Environmental Protection
Type
Oral
Year
2014
2018
2022
2024
Home » Authors » Results

Authors

Filter results5 paper(s) found.

1. Applications Of Small UAV Systems For Tree And Nursery Inventory Management

Unmanned aerial vehicles (UAV) systems could provide low-cost and high spatial resolution aerial images. These features and ease of operation make it a practical tool for applications in precision agriculture and horticulture. This paper highlights the application of UAV systems in tree counting, which is vital for tree inventory management and yield estimation. In this paper, two types of trees were discussed. One type is with non-uniform canopy area (e.g. container plants and citrus... Y. She, R. Ehsani, J. Robbins, J. Owen, J.N. Leiva

2. Joint Structure and Colour Based Parametric Classification of Grapevine Organs from Proximal Images Through Several Critical Phenological Stages

Proximal colour imaging is the most time and cost-effective automated technology to acquire high-resolution data describing accurately the trellising plane of grapevine. The available textural information is meaningful enough to provide altogether the assessment of additional agronomic parameters that are still estimated either manually or with dedicated and expensive instrumentations. This paper proposes a new framework for the classification of the different organs visible in the trellising... F.Y. Abdelghafour, R. Rosu, B. Keresztes, C. Germain, J. Da costa

3. Real-Time Fruit Detection Using Deep Neural Networks

Proximal imaging using tractor-mounted cameras is a simple and cost-effective method to acquire large quantities of data in orchards and vineyards. It can be used for the monitoring of vegetation and for the management of field operations such as the guidance of smart spraying systems for instance. One of the most prolific research subjects in arboriculture is fruit detection during the growing season. Estimations of fruit-load can be used for early yield assessments and for the monitoring of... B. Keresztes, J. Da costa, D. Randriamanga, C. Germain, F. Abdelghafour

4. Variable Rate Fertilization in a High-yielding Vineyard of Cv. Trebbiano Romagnolo May Reduce Nitrogen Application and Vigour Variability Without Loss of Crop Load

The site-specific management of vineyard cultural practices may reduce the spatial variability of vine vigor, contributing to achieve the desired yield and grape composition. In this framework, variable rate fertilization may effectively contribute to reduce the different availability of mineral nutrients between different areas of the vineyard, and so achieving the vine’s aforementioned performances. The present study was aimed to apply a variable rate fertilization in a high-yielding... G. Allegro, R. Martelli, G. Valentini, C. Pastore, R. Mazzoleni, F. Pezzi, I. Filippetti, A. Ali

5. Enhancing Precision Agriculture with Cosmic-ray Neutron Sensing: Monitoring Soil Moisture Dynamics and Its Impact on Grapevine Physiology

Precision agriculture has emerged as a transformative approach in modern viticulture, seeking to optimize vineyard management. Vineyard operations rely heavily on effective water management, especially in regions where water availability can significantly affect grape quality and yield. The relationship between soil moisture and grapevine physiology is however complex. Therefore, understanding these relationships is crucial for optimizing vineyard operations. Cosmic-ray neutron sensing (CRNS)... R. Mazzoleni, F. Vinzio, S. Emamalizadeh, G. Allegro, I. Filippetti, G. Baroni