Proceedings

Find matching any: Reset
Liburd, O.E
Li, D
Add filter to result:
Authors
Li, D
Jiang, H
Chen, S
Wang, C
Li, D
Miao, Y
Fernández, .G
Kitchen, N.R
Ransom, C.
Bean, G.M
Sawyer, .E
Camberato, J.J
Carter, .R
Ferguson, R.B
Franzen, D.W
Franzen, D.W
Franzen, D.W
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Shanahan, J.F
Wakahara, S
Miao, Y
Gupta, S
Rosen, C
Mizuta, K
Zhang, J
Li, D
Zhou, C
Lee, W
Pourreza, A
Schueller, J.K
Liburd, O.E
Ampatzidis, Y
Zuniga-Ramirez, G
Topics
In-Season Nitrogen Management
ISPA Community: Nitrogen
In-Season Nitrogen Management
Big Data, Data Mining and Deep Learning
Type
Poster
Oral
Year
2018
2022
Home » Authors » Results

Authors

Filter results4 paper(s) found.

1. Estimating Litchi Canopy Nitrogen Content Using Simulated Multispectral Remote Sensing Data

This study aims at evaluating the performance of seven highly spatial resolution remote sensing data in litchi canopy nitrogen content estimation. The litchi canopy reflectance were collected by ASD field spectrometer. Then the canopy spectral data were resampled based on the spectral response functions of each satellite sensors (Geo-eye, GF-WFV1, Rapid-eye, WV-2, Landsat 8, WV-3, and Sentinel-2). The spectral indices in literature were derived based on the simulated data. Meanwhile, the successive... D. Li, H. Jiang, S. Chen, C. Wang

2. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US Midwest

Effective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan

3. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine Learning

Precision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li

4. Strawberry Pest Detection Using Deep Learning and Automatic Imaging System

Strawberry growers need to monitor pests to determine the options for pest management to reduce damage to yield and quality.  However, manually counting strawberry pests using a hand lens is time-consuming and biased by the observer. Therefore, an automated rapid pest scouting method in the strawberry field can save time and improve counting consistency. This study utilized six cameras to take images of the strawberry leaf. Due to the relatively small size of the strawberry pest, six cameras... C. Zhou, W. Lee, A. Pourreza, J.K. Schueller, O.E. Liburd, Y. Ampatzidis, G. Zuniga-ramirez