Proceedings
Authors
| Filter results9 paper(s) found. |
|---|
1. The Use Of A Ground Based Remote Sensor For Winter Wheat Grain Yield Prediction In Northern PolandThe aim of the research was to investigate if algorithms developed for winter wheat, cv. Trend, yield predictions, based on ground measured GNDVI, differ significantly between 2 sequent years. The research was conducted in Pomerania, northern Poland (54° 31' N 17° 18' E) on sandy loam soils. The strip-trial design was used to compare the effect of 6 N treatments: 0, 50, 100, 150, 200 and 250 kg ha-1, applied as one dose at the beginning... S.M. Samborski, D. Gozdowski, S.E. Dobers |
2. Adoption And Use Of Precision Agriculture Technologies By PractitionersA survey of farmers and farm service providers were initiated to ascertain the adoption and use of precision agriculture technologies as well as the barriers to and incentives for adoption. Farm-level data were collected via audience response system at the 2009 Alabama Precision Ag and Field Crops Conference and local winter production meetings across the six crop reporting districts in Alabama. Service provider data were collected using an online survey. Questions common to farmers and service... A.T. Winstead, S.H. Norwood, T. Griffin, A.M. Adrian, M. Runge, J.P. Fulton |
3. Spatial Variability Of Spikelet Sterility In Temperate Rice In ChileSpikelet sterility (blanking) causes large economic losses to rice farmers in Chile. The most common varieties are susceptible to low air and water temperatures during pollen formation and flowering, which is the main responsible for the large year to year variation observed in terms of blanking and, therefore, of grain yield. The present work had for objective to study the spatial variability of spikelet sterility within two rice fields, during two consecutive seasons, and relate it to water... R.A. Ortega, D.E. Del solar, E. Acevedo |
4. Active Optical Sensor Algorithms For Corn Yield Prediction And In-Season N Application In North DakotaA recent series of seventy seven field N rate experiments with corn (Zea mays, L.) in North Dakota was conducted. Multiple regression analysis of the characteristics of the data set indicated that segregating the data into those with high clay soils and those with medium textures increased the relationship between N rate and corn yield. However, the nearly linear positive slope relationship in high clay soils and coarser texture soils with lower yield productivity indicated... L. Sharma, H. Bu, R. Ashley, G. Endres, J. Teboh, D.W. Franzen |
5. Use Of Quality And Quantity Information Towards Evaluating The Importance Of Independent Variables In Yield PredictionYield predictions based on remotely sensed data are not always accurate. Adding meteorological and other data can help, but may also result in over-fitting. Working with American Crystal Sugar, we were able to demonstrate that the relevance of independent variables can be tested much more reliably when not only yield but also quality attributes are known, such as the sugar content and the sugar... E. Momsen, J. Xu, D.W. Franzen, J.F. Nowatzki, K. Farahmand, A.M. Denton |
6. Tracking Two Decades of Precision Agriculture Through the Croplife Purdue SurveyThe CropLife/Purdue University precision dealer survey is the longest-running continuous survey of precision farming adoption. The 2017 survey is the 18th, conducted every year from 1997 to 2009, and then every other year following. For individuals working in agriculture there is great value in knowing who is doing what and why, to get a better understanding of the utilities and applications, and to guide investments. A major revision in survey questions was made... B. Erickson, J. Lowenberg-deboer, J. Bradford |
7. Predicting, Mapping, and Understanding the Drivers of Grain Protein Content Variability – Utilising John Deere’s New Harvestlab 3000 Grain Sensing SystemGrain protein content (GPC) is a key determinant of the prices that grain growers receive, and the rising cost of production is shifting management focus towards optimising this to maximise return on investment. In 2023, John Deere released the HarvestLab 3000TM Grain Sensing system in Australia for real-time, on-the-go measurement of protein, starch, and oil values for wheat, barley, and canola. However, while the uptake of these sensors is increasing, GPC maps are not available for... M.J. Tilse, P. Filippi, T. Bishop |
8. Are Pulses Really More Variable Than Cereals? a Country-wide Analysis of Within-field VariabilityIn Australia, pulses are underutilised by growers relative to cereal crops. There is significant global interest in growing pulses to provide more plant protein, and they also provide a string of agronomic and environmental benefits, such as their ability to fix nitrogen, and provide a pest and disease break for cereal crops. Many studies attribute this underutilisation to pulses exhibiting greater within-field yield variability than cereals. However, this has never been comprehensively examined... P. Filippi, T. Bishop, D. Al-shammari, T. Mcpherson |
9. On Data-driven Crop Yield Modelling, Predicting, and Forecasting and the Common Flaws in Published StudiesThere has been a recent surge in the number of studies that aim to model crop yield using data-driven approaches. This has largely come about due to the increasing amounts of remote sensing (e.g. satellite imagery) and precision agriculture data available (e.g. high-resolution crop yield monitor data), and abundance of machine learning modelling approaches. This is a particular problem in the field of Precision Agriculture, where many studies will take a crop yield map (or a small number), create... P. Filippi, T. Bishop, S. Han, I. Rund |