Proceedings
Topics
| Filter results54 paper(s) found. |
|---|
1. Using Soil Attributes To Model Sugar Cane Quality ParametersThe crop area of sugar cane production in Brazil has increased substantially in the last few years, especially to meet the global bioethanol demand. Such increasing production should take place not only in new sugar cane crop areas but mainly with the goal of improving the quality of raw material like sugar content (Pol). Hence, models that can describe the behaviour of the quality parameters of sugar cane may be important to understand the effects of the soil attributes on those parameters. ... F.A. Rodrigues jr., P.S. Magalhães, H.C. Franco, D.G. Cerri |
2. Statistical Procedure to Compare Farming Procedures with the Observation of Spatial Trends and Correlations in On-Farm ResearchModern management and machines have been introduced on a demonstration farm in Ganhe (China). This has led to new methods of cultivation with effects on yields, cost structure and thus also on the economic success of the farm. These effects should be tested with the help of an on-farm trial. The cultivation methods differed in the equipment used, plant protection and fertilisation strategies. In contrast to classical field trials, normal working practice farm machinery and fields are used in ... P. Wagner, M. Langrock |
3. Assessing the Potential of an Algorithm Based On Mean Climatic Data to Predict Wheat YieldIn crop yield prediction, the unobserved future weather remains the key point of predictions. Since weather forecasts are limited in time, a large amount of information may come from the analysis of past weather data. Mean data over the past years and stochastically generated data are two possible ways to compensate the lack of future data. This research aims to demonstrate that it is possible to p... F. Vancutsem, V. Leemans, S. Ferrandis vallterra, B. Bodson, J. Destain, M. Destain, B. Dumont |
4. Transient Water Flow Model in a Soil-Plant System for Subsurface Precision IrrigationThe spatial variability of plant-water characteristic in the soil is still unclear. This limits the attempt to model the soil-plant-atmosphere system with this factor. Understanding the non-steady water flow along the soil-plant component is essential to understand their spatial variabili... M.B. Zainal abidin, S. Shibusawa, M. Ohaba, Q. Li, M. Kodaira, M.B. Khalid |
5. A New Approach to Yield Map CreationOne of the barriers to using yield maps as a data layer in precision agriculture activities is that the maps being generated to day are not very accurate in representing what really happened in field. Numerous data errors in the way the data is collected, poor calibration habits on the part of opera... C. Romier, M. Hyrien, D. Lamker |
6. Evaluation of PRS(TM) Probe Technology and Model for Variable Rate Fertilizer Application in Hummocky Fields in Saskatchewan... K. Greer, J. Burns, E. Bremer |
7. A High-Reliability Database-Supported Modular Precision Irrigation SystemTitle of Abstract: A High-Reliability Database-Supported Modular Precision Irrigation System Authors of Abstract: N. Kamel1, S. Sharaf1, A. El-Shafei... S. Sharaf, A. Elshafie, N.N. Kamel, D.A. Yousef |
8. Maximizing Agriculture Equipment Capacity Using Precision Agriculture TechnologiesGuidance systems are one of the primary Precision Agriculture technologies adopted by US farmers. While most practitioners establish their initial AB lines for fields based on previous management patterns, a potential exists in conducting analyses to establish AB lines or traffic patterns which maximize field capacity. The objective of this study was t... A.M. Poncet, T.P. Mcdonald, G. Pate, B. Tisseyre, J.P. Fulton |
9. I-SALUS: New Web Based Spatial Systems for Simulating Crop Yield and Environmental ImpactSALUS (System Approach to Land Use Sustainability) model is designed to simulate the impact of agronomic management on yield and environmental impact. SALUS model has new approaches and algorithms for simulating soil carbon, nitrogen, phosphorous, tillage, soil water balance and yield components. In the past, the use of the crop model was not easy for genera... T. Chou, M. Yeh, J. Chen, B. Basso |
10. Nitrogen Management in Lowland RiceRice is staple diet for more than fifty percent of the world population and nitrogen (N) deficiency is one of the major yields limiting constraints in most of the rice producing soils around the world. The lowland rice N recovery efficiency is <50% of applied fertilizers in most agro-ecological regions. The low N efficiency is associated with losses caused by leaching, volatilization, surface runoff, and denitrification. Hence, improving N use efficiency is crucial for higher yields, low c... N.K. Fageria, A.B. Santos |
11. Prediction of Nitrogen Needs with Nitrogen-rich Strips and Ramped Nitrogen StripsBoth nitrogen rich strips and ramped nitrogen strips have been used to estimate topdress nitrogen needs for winter wheat based on in-season optical reflectance data. The ramped strip system places a series of small plots in each field with increasing levels of nitrogen to determine the application rate at which predicted yield response to nitrogen reaches a plateau. The nitrogen-rich strip system uses a nitrogen fertilizer optimization algorithm based on optical reflectance measures from the ... D.C. Roberts, B.W. Brorsen, W.R. Raun, J.B. Solie |
12. Spatial Patterns of Nitrogen Response Within Corn Production FieldsCorn (Zea mays L.) yield response to nitrogen (N) application is critical to being able to develop management practices that reduce N application or improve N use efficiency. Nitrogen rate studies have been conducted within small plots; however, there have been few field scale evaluations. This study was designed to evaluate N response across 14 corn fields in central Iowa using different rates of N applied in strips across fields. These fields ranged in size from 15 to 130 ha with N... J.L. Hatfield |
13. Developing Nitrogen Algorithms for Corn Production Using Optical SensorsRemote sensing for nitrogen management in cereal crops has been an intensive research area due to environmental concerns and economic realities of today’s agronomic system. In the search for improved nitrogen rate decisions, what approach is most often taken and are those approaches justified through scientific investigation? The objective of this presentation is to educate decision makers on how these algorithms are developed and evaluate how well they work in the field on a small-plot... R.W. Mullen, S.B. Phillips, W.R. Raun, W.E. Thomason |
14. Variability in Observed and Sensor Based Estimated Optimum N Rates in CornRecent research showed that active sensors such as Crop Circle can be used to estimate in-season N requirements for corn. The objective of this research was to identify sources of variability in the observed and Crop Circle-estimated optimum N rates. Field experiments were conducted at two locations for a total of five sites during the 2007 growing season using a randomized complete block design with increasing N rates applied at V6-V8 (NV6) as the treatment factor. Field sites were selected ... R.P. Sripada, J.P. Schmidt |
15. Controller Performance Criteria for Sensor Based Variable Rate ApplicationSensor based variable rate application of crop inputs provides unique challenges for traditional rate controllers when compared to map based applications. The controller set point is typically changing every second whereas with a map based systems the set point changes much less frequently. As applied data files for a sensor based variable rate nitrogen applicator were obtained from a wheat field in north central Oklahoma. These data were analyzed to determine the magnitude and frequency of r... R.K. Taylor, P. Bennur, J.B. Solie, N. Wang, P. Weckler, W.R. Raun |
16. Soil and Crop Factors to Site-specific Nitrogen Management on Sugarcane FieldsNitrogen (N) is one of the most widely used fertilizers in crops and the most harmful to the environment. The increase fertilizers consumption, mainly N sources (one of the most widely fertilizer used in sugarcane fields), is one of the main factors underlying the sustainability of the entire production process. Currently, N recommendations in sugarcane are based only on the expected yield. However, there is little agronomic support for nitrogen (N) recommendations based on expected yield, de... G.M. Sanches, R. Otto, F.R. Pereira |
17. Survey Shows Specialty and Commodity Crop Retailers Use Precision Agriculture DifferentlyThe 2021 CropLife-Purdue Survey of precision agricultural practices by US agricultural input dealers serving the American grain and oilseed sector shows that most of them use GPS guidance and related technologies like sprayer boom control, most provide variable rate fertilizer services, and the majority say that fertilizer decisions are influenced by grower data. In contrast, dealers serving horticultural and specialty crop farms indicate comparatively modest adoption of many precision agricu... B.J. Erickson, J. Lowenberg-deboer |
18. Spatial and Temporal Factors Impacting Incremental Corn Nitrogen Fertilier Use EfficiencyCurrent tools for making crop N fertilizer recommendations are primarily based on plot and field studies that relate the recommendation to the economic optional N rate (EONR). Some tools rely entirely on localized EONR (e.g., MRTN). In recent years, tools have been developed or adapted to account for within-field variation in crop N need or variable within season factors. Separately, attention continues to elevate for how N fertilizer recommendations might account for environmenta... N.R. Kitchen, C.J. Ransom, J.S. Schepters, J.L. Hatfield, R. Massey |
19. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and IndianaPrecision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minne... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor |
20. Nitrogen Fertilization of Potato Using Management Zone in Prince Edward Island, CanadaPotato is sensible to nitrogen (N) and optimal N fertilization improve the tuber yield and its quality. Potato crop N response varies widely within fields. It is also well recognized that significant spatial and temporal variation in soil N availability occurs within crop fields. However, uniform application of N fertilizer is still the most common practice under potato production. Management zone (MZ) approach can help growers to achieve a part of this. The goal of the project is to compare ... A. Cambouris, M. Duchemin, N. Ziadi |
21. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine LearningPrecision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li |
22. Nitrogen Status Prediction on Pasture Fields Can Be Reached Using Visible Light UAV Data Combined with Sentinel-2 ImageryPasture fields under integrated crop-livestock system usually receive low or no nitrogen fertilization rates, since the expectation is that nitrogen demand will be provided by the soybean remaining straw cropped previously. However, keeping nitrogen at suitable levels in the entire field is the key to achieving sustainability in agricultural production systems. In this sense, remote sensing technologies play an essential role in nitrogen monitoring in pastures and crops. With the launch of th... F.R. Pereira, J.P. Lima, R.G. Freitas, A.A. Dos reis, L.R. Amaral, G.K. Figueiredo, R.A. Lamparelli, J.C. Pereira, P.S. Magalhães |
23. Variable Rate Nitrogen Approach in a Potato-wheat-wheat Cropping SystemNitrogen application in agriculture is a vital process for optimal plant growth and yield outcomes. Different factors such as topography, soil properties, historical yield, and crop stress affect nitrogen (N) needs within a field. Applying variable N within a field could improve precision agriculture. Optimal N management is a system that involves applying a conservative variable base rate at or shortly after planting followed by in-season assessment and, if needed, variable rate application&... E.A. Flint, M. Yost, B.G. Hopkins |
24. Evaluation of Nitrogen Recommendation Tools for Winter Wheat in NebraskaAttaining both high yield and high nitrogen (N) use efficiency (NUE) simultaneously remains a current research challenge in crop production. Digital ag technologies for site-specific N management have been demonstrated to improve NUE. This is due to the ability of digital technologies to account for the spatial and temporal distribution of crop N demand and available soil N in the field which varies greatly according t... J. Cesario pereira pinto, L. Thompson, N. Mueller, T. Mieno, G. Balboa, L. Puntel |
25. Nitrogen Placement Considerations for Maize Production in the Eastern US CornbeltProper fertilizer placement is essential to optimize crop performance and amount of applied nitrogen (N) along with crop yield potential. There exists several practices currently used in both research within farming operations on how and when to apply N to maize (Zea mays L). Split applications of N in Ohio is popular with farmers and provides an economic benefit but more recently some farmers have been using mid- and late-season N fertilizer applications for their maize production.&... J.P. Fulton, E. Hawkins, S. Shearer, A. Klopfenstein, J. Hartschuh, S. Custer |
26. In-season Nitrogen Management of Maize Based on Nitrogen Status and Lodging Risk PredictionDevelopment of effective precision nitrogen (N) management strategies is crucially important for food security and sustainable development. Lodging is one of the major constraints to increasing maize yield that can be induced by strong winds, and is also influenced by management practices, like N rate. When making in-season N application decisions, lodging risk should be considered to avoid yield loss. Little has been reported on in-season N management strategies that also incorporate lodging... R. Dong, Y. Miao, X. Wang |
27. Farmers’ and Experts’ Perceptions of Precision Farming Impacts on Economic Efficiency, Food Security, Climate and Environmental Sustainability“Global food security could be in jeopardy, due to mounting pressures on natural resources and to climate change, both of which threaten the sustainability of food systems at large. Excessive fertilizer use can contribute to problems of eutrophication, acidification, climate change and the toxic contamination of soil, water and air. Lack of fertilizer application may cause the degradation of soil fertility. Agricultural production systems need to focus more on the effective co... C.I. Anaba |
28. Robot Safety Issues in Field Crops - EU Regulatory Issues and Technical AspectsThe use of robots in Precision Agriculture is becoming of great interest, but they introduce a new kind of risk in the field due to their self-acting and self-driving capability. Safety issues appear with respect to people working in the same field in human-robot collaboration (HRC) framework or to the accidental presence of humans or animals. A robot out of control may also invade other areas causing unpredictable harm and damage. Currently, the safety of highly automated agricultu... M. Canavari, P. Lattanzi, G. Vitali, L. Emmi |
29. Assessment of Active Crop Canopy Sensor As a Tool for Optimal Nitrogen Management in Dryland Winter WheatOptimum nitrogen (N) fertilizer application is important for agronomic, economic, and environmental reasons. Among different N management tools, active crop canopy sensors are a recent and promising tool widely evaluated for use in corn but still under-evaluated for use in winter wheat. The objective of this study was to determine whether vegetation indices derived from in-season active crop canopy sensor data can be used to predict winter wheat grain yield and protein content and subsequentl... D. Ghimire |
30. In-season Diagnosis of Winter Wheat Nitrogen Status Based on Rapidscan Sensor Using Machine Learning Coupled with Weather DataNitrogen nutrient index (NNI) is widely used as a good indicator to evaluate the N status of crops in precision farming. However, interannual variation in weather may affect vegetation indices from sensors used to estimate NNI and reduce the accuracy of N diagnostic models. Machine learning has been applied to precision N management with unique advantages in various variables analysis and processing. The objective of this study is to improve the N status diagnostic model for winter wheat by c... J. Lu, Z. Chen, Y. Miao, Y. Li, Y. Zhang, X. Zhao, M. Jia |
31. Effect of Application Rate and Height on Spray Deposition and Efficacy of Fungicides Applied with a Spray Drone in CornFoliar application of fungicides is a key management strategy for corn growers in the United States to protect crop yield from diseases like southern corn rust (SCR), tar spot (TS), and northern corn leaf blight (NLB). Recently, the use of spray drones for fungicide applications have gained an interest among growers and consultants due to their potential as another application tool to ensure the timely application of fungicides. Currently, the information on optimal application parameters to&... C. Byers, S. Virk, R.C. Kemerait |
32. A Flexible Software Architecture for General Precision Agriculture Decision Support SystemsAgricultural data management is a complex problem. Both the data and the needs of the users are diverse. Given the complexity of the problem, it's easy to ascertain that a single solution will not be able to meet the needs of all users. This paper presents a software architecture designed to be extensible as well as flexible enough to provide agricultural management tools for a wide variety of users. The solution is based on a microservice architecture, which allows for the creation of ne... W. Neils, D. Mommen |
33. Spray Deposition and Efficacy of Pesticide Applications with Spray Drones in Row Crops in the Southeastern USThe use of spray drones for pesticide applications is expanding rapidly in agriculture, with one of the top uses currently being in the row crop production. Several research studies were undertaken in 2022 and 2023 to measure and assess spray deposition and efficacy of pesticides applied with spray drones in the major row crops (corn, cotton and peanuts) grown in the southeastern US. These studies also evaluated and compared the deposition and pesticide efficacy of spray drones with tradition... C. Byers, R. Meena, J. Kichler, R.C. Kemerait, L. Hand, S. Virk |
34. Static and In-field Validation of Application Accuracy of Commercial Spray Drones at Varying Rates and SpeedsThe emerging application of spray drones in agriculture for pesticide delivery has seen significant interest recently. Currently, various spray drone platforms with advanced capabilities such as variable-rate application and edge-spraying are commercially available; however, limited research and information is available regarding the application accuracy of these systems. Pesticide applications with spray drones in several research studies conducted at the University of Georgia in 2023 indica... S. Virk, R.K. Meena, C. Byers |
35. Spray Deposition Characterization of Uniform and Variable-rate Applications with Spray DronesThe use of unmanned aerial application systems (also known as spray drones) has seen rapidly increasing interest in recent years due to their potential to allow for timely application of pesticides and being able to apply in areas inaccessible to ground application sprayers. Newer spray drone models’ have improved application systems such as rotary atomizers for creating spray droplets and capabilities such as variable-rate (VR) application for site-specific pesticide applications. An i... C. Byers, S. Virk, R.K. Meena, G. Rains |
36. Field-level Zoning at Regional Scale Using Remote Sensing and GIS: Lessons Learned from the Desert Agriculture Region of Southern CaliforniaA decision support tool, SAMZ-Desert, utilizing GIS and remote sensing techniques, was created to delineate management zones (MZs) for a total of 6852 fields in California's Imperial County. Landsat-8 NDVI data from April 27, 2018, was employed for this purpose. Furthermore, 11 cloud-free images captured between 2018 and 2020 were statistically analyzed to assess within-field NDVI variability and the temporal stability of MZs at the regional level. Approximately 37% of the fields in the r... A.K. Verdi, A. Garg, A. Sapkota |
37. Are Pulses Really More Variable Than Cereals? a Country-wide Analysis of Within-field VariabilityIn Australia, pulses are underutilised by growers relative to cereal crops. There is significant global interest in growing pulses to provide more plant protein, and they also provide a string of agronomic and environmental benefits, such as their ability to fix nitrogen, and provide a pest and disease break for cereal crops. Many studies attribute this underutilisation to pulses exhibiting greater within-field yield variability than cereals. However, this has never been comprehensively exami... P. Filippi, T. Bishop, D. Al-shammari, T. Mcpherson |
38. Precision Irrigation Strategies for Climate-resilient Crop Production and Water Resource ManagementDeficit irrigation management practices that best optimize the use of limited water resources without impacting crop yield are necessary to ensure the sustainability of agricultural production. This is particularly crucial in regions characterized by semi-arid climate, like Western Kansas, where the challenge of depleting water resources is worsened by the occurrence of extreme climate conditions. Therefore, a data-driven irrigation management strategy such as one developed based on crop evap... K.E. Igwe, I. Onyekwelu, V. Sharda |
39. Detailed Derivation of Spatial Soil Attributes Using Soil Sensor Data, Terrain Analysis and Soil Maps with Supervised ClassificationDetailed knowledge of the spatial distribution of soils is critical for improved management and modeling in agriculture and forestry. However, information from existing soil maps is often not accurate enough and soil units are too large. In the current study, we used intensively collected information from soil profile analyses at the Scheyern site and used this as training data to map soil relationships on land in Dürnast with long-term fertilization experiments (BonaRes). Both... K. Heil |
40. Comparative Analysis of Spray Nozzles on Drones: Volumetric Distribution at Different HeightsAgricultural drones are emerging as a revolutionary tool in modern agriculture, aiming to enhance precision and efficiency in crop management. One of their main advantages is the ability to operate in adverse soil and canopy height conditions, making them a valuable instrument for the application of agrochemicals. In this context, the optimization of spraying systems plays a critical role, with the goal of ensuring the effective application of agrochemicals, aiming to maximize productivity an... A. Felipe dos santos, J.E. Silva, O.P. Costa, F.D. Inácio , R. Oliveira, W. Silva, L. Lacerda, T. Orlando costa barboza |
41. Decision Support Tools for Developing Aflatoxin Risk Maps in Peanut FieldsAspergillus flavus and Aspergillus parasiticus hereafter referred to jointly as A. flavus, are soil fungi that infect and contaminate preharvest and postharvest peanuts with the carcinogenic secondary metabolite aflatoxin. A. flavus can cause extensive economic losses to peanut growers and shellers by contaminating peanut kernels with aflatoxins. In the southeastern U.S., contamination from aflatoxin continues to be a major threat to the peanut industry and... G. Vellidis, M. Abney, T. Burlai, J. Fountain, R.C. Kemerait, S. Kukal, L. Lacerda, S. Maktabi, A. Peduzzi, C. Pilcon, M. Sysskind |
42. A Decision-support Tool to Optimize Mid-season Corn Nitrogen Fertilizer Management from Red, Green, Blue SUAS ImagesCorn receives more nitrogen (N) fertilizer per unit area than any other row crop and optimized soil fertility management is needed to help maximize farm profitability. In Arkansas, N fertilizer for corn is delivered in two- or three-split applications. Three-split applications may provide a better match to crop needs and contribute to minimizing yield loss from N deficiency. However, the total amounts are selected based on soil texture and yield goal without accounting for early-season losses... A. Poncet, T. Bui, W. France, T. Roberts, L. Purcell, J. Kelley |
43. Deposition Characteristics of Different Style Spray Tips at Varying Speeds and Altitudes from an Unmanned Aerial SystemThe application of pesticides with a UAS has become a popular practice over the past few years within crop production. The ability to carry larger volumes of liquid i onboard, reduced costs, and simple operation has attributed to the increased popularity. Additionally, the increased number of fungicide applications in corn due to the tar spot disease has shown that the demand for aerial applications of all types has increased with UAS pesticide application technology providing the opportunity... A. Leininger, K. Verhoff, K. Lovejoy, A. Thomas, G. Davis, A. Emmons, J.P. Fulton |
44. Coupling Macro-scale Variability in Soil and Micro-scale Variability in Crop Canopy for Delineation of Site-specific Management GridThe efficient application of fertilizers via Site-Specific Management Units (SSMUs) or Management Zones (MZs) can significantly enhance crop productivity and nitrogen use efficiency. Conventional mathematical and data-driven clustering methods for MZ delineation, while prevalent, often lack precision in identifying productivity zones. This research introduces a knowledge-driven productivity zone to mitigate these limitations, offering a more precise and efficacious approach. The hyp... W.A. Admasu, D. Mandal, R. Khosla |
45. Using Remote Sensing to Benchmark Crop Coefficient Curves of Sweet Corn Grown in the Southeastern United StatesIrrigation is responsible for over 75% of global freshwater use, making it the largest consumer of the world’s freshwater resources. With freshwater scarcity increasing worldwide, increased efficient irrigation water use is necessary. Smart irrigation is described as ‘the linking of technology and fundamental knowledge of crop physiology to significantly increase irrigation water use efficiency'. Irrigation scheduling tools such as smartphone applications have become... E. Bedwell, L. Lacerda, T. Mcavoy, B.V. Ortiz, J. Snider, G. Vellidis, Z. Yu |
46. AI Tools in Agri DSS Pipeline - the Case of Irrigated SugarbeetA general pipeline that can be associated to a DSS includes several steps. Data Collectionn includes Acquisition, extraction, and aggregation of data from previously identified and selected sources. Data Cleaning and preparation make data available for exploratory analysis that make them usable. Data Analysis is then applied to extract meaningful information e.g. by statistical and/or simulation models. Data are successively synthesized and visualized to make them clear to the decision-maker ... G.-. Vitali, C. Ferraz |
47. Onboard Weed Identification and Application Test with Spraying Drone SystemsCommercial spraying drone systems nowadays have the ability to implement variable rate applications according to pre-loaded prescription maps. Efforts are needed to integrate sensing and computing technologies to realize on-the-go decision making such as those on the ground based spraying systems. Besides the understudied subject of drone spraying pattern and efficacy, challenges also exist in the decision making, control, and system integration with the limits on payload and flight endurance... Y. Shi, M. Islam, K. Steele, J.D. Luck, S. Pitla, Y. Ge, A. Jhala, S. Knezevic |
48. Field Validation of Airblast Spray Advisor Decision Support Web App for Citrus ApplicationsField conditions influencing the effectiveness of pesticide application in orchard and vineyard production systems are complex. As a result, growers and pesticide applicators grapple with how to make the right decisions for setting up the sprayer that will lead to the most efficient and effective outcomes. Airblast Spray Advisor, a decision support web app built on MATLAB was designed to assist with planning and evaluation of such applications when using airblast sprayers. It re... P.A. Larbi |
49. Optimizing Vineyard Crop Protection: an In-depth Study of Spraying Drone Operational ParametersIn modern agriculture, the precise and efficient application of agrochemicals is essential to ensure crop health and increase productivity while minimizing adverse environmental impacts. While traditional spraying methods have long been the cornerstone of crop protection, the introduction of unmanned aerial vehicles (UAVs), commonly known as drones), has led to a revolutionary era in agriculture. UAVs offer novel opportunities to improve agricultural practices by providing precision, efficien... V. Psiroukis, S. Fountas, H. Uyar, A. Balafoutis, A. Kasimati |
50. Integrated Data-driven Decision Support SystemsSite-specific and data-driven decision support systems in agriculture are evolving fast with the rapid advancements in cutting-edge technologies such as Agricultural Artificial Intelligence (AgAI) and big data integration. Data driven decision support systems have the potential to revolutionize various aspects of farming, from crop monitoring and precision management decisions to the way growers interact with complex technologies. The AgAI decision support-based systems excel at ana... L.A. Puntel, P. Pellegrini, S. Joalland , J. Rattalino, L. Vitantonio |
51. Simulating Climate Change Impacts on Cotton Yield in the Texas High PlainsCrop yield prediction enables stakeholders to plan farming practices and marketing. Crop models can predict crop yield based on cropping system and practices, soil, and other environmental factors. These models are being used for decision support in agriculture in a variety of ways. Cultivar selection, water and nutrient input optimization, planting date selection, climate change analysis and yield prediction are some of the promising area of applications of the models in field level farm man... B. Ghimire, R. Karn, O. Adedeji, G. Ritchie, W. Guo |
52. Predicting Within-field Cotton Yield Variability Using DSSAT for Decision Support in Precision AgricultureThe quantification of spatial and temporal variability of cotton (Gossypium hirsutum L.) yield provides critical information for optimizing resources, especially water, in the Southern High Plains (SHP), Texas, with a diminishing water supply. The within-field yield variation is mostly influenced by the properties of soil and their interaction with water and nutrients. The objective of this study was to predict within-field cotton yield variability using a crop growth mode... B. Ghimire, R. Karn, O. Adedeji, W. Guo |
53. From Scientific Literature to the End User: Democratizing Access to Data Products Through Interactive ApplicationsIn recent years, the sustained advance in the creation of powerful programming libraries is allowing not only the creation of complex models with predictive capabilities but also revolutionizing visualization processes and the deployment of interactive applications. Some of these tools, such as Streamlit or Shiny frameworks in languages such as Python or R, allow us to create from simple applications with friendly interfaces to complex tools. These interactive digital decision dashboards allo... C. Hernandez, A. Correndo, J. Lacasa, P. Magalhaes cisdeli, G.N. Nocera santiago, I. Ciampitti |
54. Predicting the Spatial Distribution of Aflatoxin Hotspots in Peanut Fields Using DSSAT CSM-CROPGRO-PEANUT-AFLATOXINAflatoxin contamination in peanuts (Arachis hypogaea L.) is a persistent concern due to its detrimental effects on both profitability and public health. Several plant stress-inducing factors, including high soil temperatures and low soil moisture, have been associated with aflatoxin contamination levels. Understanding the correlation between stress-inducing factors and contamination levels is essential for implementing effective management strategies. This study uses the DSSAT CSM-CR... S. Maktabi, G. Vellidis, G. Hoogenboom, K. Boote, C. Pilcon, J. Fountain, M. Sysskind, S. Kukal |