Proceedings

Find matching any: Reset
In-Season Nitrogen Management
Drone Spraying
Add filter to result:
Authors
Amaral, L.R
Balafoutis, A
Balboa, G
Byers, C
Byers, C
Byers, C
Byers, C
Cambouris, A
Cammarano, D
Cesario Pereira Pinto, J
Chen, Z
Costa, O.P
Coulter, J.A
Custer, S
Davis, G
Dong, R
Dos Reis, A.A
Duchemin, M
Emmons, A
Felipe dos Santos, A
Figueiredo, G.K
Flint, E.A
Fountas, S
Freitas, R.G
Fulton, J.P
Fulton, J.P
Ge, Y
Ghimire, D
Gunzenhauser, R
Gupta, S
Hand, L
Hartschuh, J
Hatfield, J.L
Hawkins, E
Hopkins, B.G
Inácio, F.D
Islam, M
Jhala, A
Jia, M
Kasimati, A
Kemerait, R.C
Kemerait, R.C
Kichler, J
Kitchen, N.R
Klopfenstein, A
Knezevic, S
Kuehner, K
Lacerda, L
Lacerda, L.N
Lamparelli, R.A
Leininger, A
Li, D
Li, Y
Lima, J.P
Lovejoy, K
Lu, J
Luck, J.D
Magalhães, P.S
Maharjan, B
Massey, R
McArtor, B
Meena, R
Meena, R.K
Meena, R.K
Miao, Y
Miao, Y
Miao, Y
Miao, Y
Mieno, T
Mizuta, K
Mizuta, K
Morales, A.C
Mueller, N
Mulla, D.J
Nielsen, R.L
Oliveira, R
Orlando Costa Barboza, T
Otto, R
Pereira, F.R
Pereira, F.R
Pereira, J.C
Pitla, S
Psiroukis, V
Puntel, L
Quinn, D.J
Rains, G
Ransom, C.J
Rosen, C
Sanches, G.M
Schepters, J.S
Shearer, S
Shi, Y
Silva, J.E
Silva, W
Steele, K
Thomas, A
Thompson, L
Uyar, H
Verhoff, K
Virk, S
Virk, S
Virk, S
Virk, S
Wakahara, S
Wakahara, S
Wang, X
Yost, M
Zhang, J
Zhang, Y
Zhao, X
Ziadi, N
Topics
In-Season Nitrogen Management
Drone Spraying
Type
Oral
Poster
Year
2022
2024
Home » Topics » Results

Topics

Filter results20 paper(s) found.

1. Soil and Crop Factors to Site-specific Nitrogen Management on Sugarcane Fields

Nitrogen (N) is one of the most widely used fertilizers in crops and the most harmful to the environment. The increase fertilizers consumption, mainly N sources (one of the most widely fertilizer used in sugarcane fields), is one of the main factors underlying the sustainability of the entire production process. Currently, N recommendations in sugarcane are based only on the expected yield. However, there is little agronomic support for nitrogen (N) recommendations based on expected yield, de... G.M. Sanches, R. Otto, F.R. Pereira

2. Spatial and Temporal Factors Impacting Incremental Corn Nitrogen Fertilier Use Efficiency

Current tools for making crop N fertilizer recommendations are primarily based on plot and field studies that relate the recommendation to the economic optional N rate (EONR).  Some tools rely entirely on localized EONR (e.g., MRTN). In recent years, tools have been developed or adapted to  account for within-field variation in crop N need or variable within season factors. Separately, attention continues to elevate for how N fertilizer recommendations might account for environmenta... N.R. Kitchen, C.J. Ransom, J.S. Schepters, J.L. Hatfield, R. Massey

3. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minne... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

4. Nitrogen Fertilization of Potato Using Management Zone in Prince Edward Island, Canada

Potato is sensible to nitrogen (N) and optimal N fertilization improve the tuber yield and its quality. Potato crop N response varies widely within fields. It is also well recognized that significant spatial and temporal variation in soil N availability occurs within crop fields. However, uniform application of N fertilizer is still the most common practice under potato production. Management zone (MZ) approach can help growers to achieve a part of this. The goal of the project is to compare ... A. Cambouris, M. Duchemin, N. Ziadi

5. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine Learning

Precision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li

6. Nitrogen Status Prediction on Pasture Fields Can Be Reached Using Visible Light UAV Data Combined with Sentinel-2 Imagery

Pasture fields under integrated crop-livestock system usually receive low or no nitrogen fertilization rates, since the expectation is that nitrogen demand will be provided by the soybean remaining straw cropped previously. However, keeping nitrogen at suitable levels in the entire field is the key to achieving sustainability in agricultural production systems. In this sense, remote sensing technologies play an essential role in nitrogen monitoring in pastures and crops. With the launch of th... F.R. Pereira, J.P. Lima, R.G. Freitas, A.A. Dos reis, L.R. Amaral, G.K. Figueiredo, R.A. Lamparelli, J.C. Pereira, P.S. Magalhães

7. Variable Rate Nitrogen Approach in a Potato-wheat-wheat Cropping System

Nitrogen application in agriculture is a vital process for optimal plant growth and yield outcomes. Different factors such as topography, soil properties, historical yield, and crop stress affect nitrogen (N) needs within a field. Applying variable N within a field could improve precision agriculture. Optimal N management is a system that involves applying a conservative variable base rate at or shortly after planting followed by in-season assessment and, if needed, variable rate application&... E.A. Flint, M. Yost, B.G. Hopkins

8. Evaluation of Nitrogen Recommendation Tools for Winter Wheat in Nebraska

Attaining both high yield and high nitrogen (N) use efficiency (NUE) simultaneously remains a current research challenge in crop production. Digital ag technologies for site-specific N management have been demonstrated to improve NUE. This is due to the ability of digital technologies to account for the spatial and temporal distribution of crop N demand and available soil N in the field which varies greatly according t... J. Cesario pereira pinto, L. Thompson, N. Mueller, T. Mieno, G. Balboa, L. Puntel

9. Nitrogen Placement Considerations for Maize Production in the Eastern US Cornbelt

Proper fertilizer placement is essential to optimize crop performance and amount of applied nitrogen (N) along with crop yield potential. There exists several practices currently used in both research within farming operations on how and when to apply N to maize (Zea mays L). Split applications of N in Ohio is popular with farmers and provides an economic benefit but more recently some farmers have been using mid- and late-season N fertilizer applications for their maize production.&... J.P. Fulton, E. Hawkins, S. Shearer, A. Klopfenstein, J. Hartschuh, S. Custer

10. In-season Nitrogen Management of Maize Based on Nitrogen Status and Lodging Risk Prediction

Development of effective precision nitrogen (N) management strategies is crucially important for food security and sustainable development. Lodging is one of the major constraints to increasing maize yield that can be induced by strong winds, and is also influenced by management practices, like N rate. When making in-season N application decisions, lodging risk should be considered to avoid yield loss. Little has been reported on in-season N management strategies that also incorporate lodging... R. Dong, Y. Miao, X. Wang

11. Assessment of Active Crop Canopy Sensor As a Tool for Optimal Nitrogen Management in Dryland Winter Wheat

Optimum nitrogen (N) fertilizer application is important for agronomic, economic, and environmental reasons. Among different N management tools, active crop canopy sensors are a recent and promising tool widely evaluated for use in corn but still under-evaluated for use in winter wheat. The objective of this study was to determine whether vegetation indices derived from in-season active crop canopy sensor data can be used to predict winter wheat grain yield and protein content and subsequentl... D. Ghimire

12. In-season Diagnosis of Winter Wheat Nitrogen Status Based on Rapidscan Sensor Using Machine Learning Coupled with Weather Data

Nitrogen nutrient index (NNI) is widely used as a good indicator to evaluate the N status of crops in precision farming. However, interannual variation in weather may affect vegetation indices from sensors used to estimate NNI and reduce the accuracy of N diagnostic models. Machine learning has been applied to precision N management with unique advantages in various variables analysis and processing. The objective of this study is to improve the N status diagnostic model for winter wheat by c... J. Lu, Z. Chen, Y. Miao, Y. Li, Y. Zhang, X. Zhao, M. Jia

13. Effect of Application Rate and Height on Spray Deposition and Efficacy of Fungicides Applied with a Spray Drone in Corn

Foliar application of fungicides is a key management strategy for corn growers in the United States to protect crop yield from diseases like southern corn rust (SCR), tar spot (TS), and northern corn leaf blight (NLB). Recently, the use of spray drones for fungicide applications have gained an interest among growers and consultants due to their potential as another application tool to ensure the timely application of fungicides. Currently, the information on optimal application parameters to&... C. Byers, S. Virk, R.C. Kemerait

14. Spray Deposition and Efficacy of Pesticide Applications with Spray Drones in Row Crops in the Southeastern US

The use of spray drones for pesticide applications is expanding rapidly in agriculture, with one of the top uses currently being in the row crop production. Several research studies were undertaken in 2022 and 2023 to measure and assess spray deposition and efficacy of pesticides applied with spray drones in the major row crops (corn, cotton and peanuts) grown in the southeastern US. These studies also evaluated and compared the deposition and pesticide efficacy of spray drones with tradition... C. Byers, R. Meena, J. Kichler, R.C. Kemerait, L. Hand, S. Virk

15. Static and In-field Validation of Application Accuracy of Commercial Spray Drones at Varying Rates and Speeds

The emerging application of spray drones in agriculture for pesticide delivery has seen significant interest recently. Currently, various spray drone platforms with advanced capabilities such as variable-rate application and edge-spraying are commercially available; however, limited research and information is available regarding the application accuracy of these systems. Pesticide applications with spray drones in several research studies conducted at the University of Georgia in 2023 indica... S. Virk, R.K. Meena, C. Byers

16. Spray Deposition Characterization of Uniform and Variable-rate Applications with Spray Drones

The use of unmanned aerial application systems (also known as spray drones) has seen rapidly increasing interest in recent years due to their potential to allow for timely application of pesticides and being able to apply in areas inaccessible to ground application sprayers. Newer spray drone models’ have improved application systems such as rotary atomizers for creating spray droplets and capabilities such as variable-rate (VR) application for site-specific pesticide applications. An i... C. Byers, S. Virk, R.K. Meena, G. Rains

17. Comparative Analysis of Spray Nozzles on Drones: Volumetric Distribution at Different Heights

Agricultural drones are emerging as a revolutionary tool in modern agriculture, aiming to enhance precision and efficiency in crop management. One of their main advantages is the ability to operate in adverse soil and canopy height conditions, making them a valuable instrument for the application of agrochemicals. In this context, the optimization of spraying systems plays a critical role, with the goal of ensuring the effective application of agrochemicals, aiming to maximize productivity an... A. Felipe dos santos, J.E. Silva, O.P. Costa, F.D. Inácio , R. Oliveira, W. Silva, L. Lacerda, T. Orlando costa barboza

18. Deposition Characteristics of Different Style Spray Tips at Varying Speeds and Altitudes from an Unmanned Aerial System

The application of pesticides with a UAS has become a popular practice over the past few years within crop production. The ability to carry larger volumes of liquid i onboard, reduced costs, and simple operation has attributed to the increased popularity. Additionally, the increased number of fungicide applications in corn due to the tar spot disease has shown that the demand for aerial applications of all types has increased with UAS pesticide application technology providing the opportunity... A. Leininger, K. Verhoff, K. Lovejoy, A. Thomas, G. Davis, A. Emmons, J.P. Fulton

19. Onboard Weed Identification and Application Test with Spraying Drone Systems

Commercial spraying drone systems nowadays have the ability to implement variable rate applications according to pre-loaded prescription maps. Efforts are needed to integrate sensing and computing technologies to realize on-the-go decision making such as those on the ground based spraying systems. Besides the understudied subject of drone spraying pattern and efficacy, challenges also exist in the decision making, control, and system integration with the limits on payload and flight endurance... Y. Shi, M. Islam, K. Steele, J.D. Luck, S. Pitla, Y. Ge, A. Jhala, S. Knezevic

20. Optimizing Vineyard Crop Protection: an In-depth Study of Spraying Drone Operational Parameters

In modern agriculture, the precise and efficient application of agrochemicals is essential to ensure crop health and increase productivity while minimizing adverse environmental impacts. While traditional spraying methods have long been the cornerstone of crop protection, the introduction of unmanned aerial vehicles (UAVs), commonly known as drones), has led to a revolutionary era in agriculture. UAVs offer novel opportunities to improve agricultural practices by providing precision, efficien... V. Psiroukis, S. Fountas, H. Uyar, A. Balafoutis, A. Kasimati