Proceedings

Find matching any: Reset
Bronson, K
Bakshi, A
Bhuiya, G
Bhattarai, A
Bruce, A.E
Boukhalfa, H
Bazakos, M
Buschermohle, M.J
Bennur, P
Beitz, T
Bui, T
Baret, F
Bolten, A
Bajwa, S.G
Balakrishnan, P
Beppu, Y
Bøgild, A
Barker, D
Add filter to result:
Authors
Upadhyaya, S
Balakrishnan, P
Pujari, B
Patil, M
Kanannavar, P
Upadhyaya, S
Balakrishnan, P
Pujari, B
Patil, M
Kanannavar, P
Lebeau, F
Massinon, M
Maréchal, P
Boukhalfa, H
Bøgild, A
Nielsen, S.H
Jacobsen, N.J
Jager-Hansen, C
Jørgensen, R.N
Jensen, K
Jørgensen, O.J
de Solan, B
Lopez Lozano, R
Ma, K
Baret, F
Tisseyre, B
kulkarni, S.S
Doubledee, M
Bajwa, S.G
Rupe, J.C
Bronson, K
Horneck, D.A
Gadler, D.J
Bruce, A.E
Turner, R.W
Spinelli, C.B
Brungardt, J.J
Hamm, P.B
Hunt, E
Banerjee, M
Dutta, S
Bhuiya, G
Malik, G
Maiti, D
Gnyp, M.L
Panitzki, M
Reusch, S
Jasper, J
Bolten, A
Bareth, G
Mulla, D
Zermas, D
Kaiser, D
Bazakos, M
Papanikolopoulos, N
Stanitsas, P
Morellas, V
Larson, J.A
Stefanini, M
Lambert, D.M
Yin, X
Boyer, C.N
Varco, J.J
Scharf , P.C
Tubaña, B.S
Dunn, D
Savoy, H.J
Buschermohle, M.J
Tyler, D.D
Gebbers, R
Dworak, V
Mahns, B
Weltzien, C
Büchele, D
Gornushkin, I
Mailwald, M
Ostermann, M
Rühlmann, M
Schmid, T
Maiwald, M
Sumpf, B
Rühlmann, J
Bourouah, M
Scheithauer, H
Heil, K
Heggemann, T
Leenen, M
Pätzold, S
Welp, G
Chudy, T
Mizgirev, A
Wagner, P
Beitz, T
Kumke, M
Riebe, D
Kersebaum, C
Wallor, E
Taylor, R.K
Bennur, P
Solie, J.B
Wang, N
Weckler, P
Raun, W.R
Hirai, Y
Beppu, Y
Mori, Y
Tomita, K
Hamagami, K
Mori, K
Uchida, S
Inaba, S
Fulton, J.P
Shearer, S.A
Gauci, A
Lindsey, A
Barker, D
Hawkins, E
Poncet, A
Bui, T
France, W
Roberts, T
Purcell, L
Kelley, J
Bari, M.A
Bakshi, A
Witt, T
Caragea, D
Jagadish, K
Felderhoff, T
Pramanik, S
Choton, J
Jakhar, A
Bhattarai, A
Bastos, L
Scarpin, G
Topics
Spatial Variability in Crop, Soil and Natural Resources
Precision Crop Protection
Food Security and Precision Agriculture
Pros and Cons of Reflectance and Fluorescence-based Remote Sensing of Crop
Remote Sensing Applications in Precision Agriculture
Sensor Application in Managing In-season Crop Variability
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Precision Nutrient Management
Remote Sensing Applications in Precision Agriculture
Unmanned Aerial Systems
Profitability, Sustainability and Adoption
Precision Nutrient Management
Remote Sensing for Nitrogen Management
Spatial and Temporal Variability in Crop, Soil and Natural Resources
On Farm Experimentation with Site-Specific Technologies
Decision Support Systems
Big Data, Data Mining and Deep Learning
In-Season Nitrogen Management
Type
Poster
Oral
Year
2012
2010
2014
2016
2008
2022
2024
Home » Authors » Results

Authors

Filter results19 paper(s) found.

1. Interest Of 3D Modeling For Lai Retrieval From Canopy Transmittance Measurements: The Cases Of Wheat And Vineyard

Remote sensing techniques are now widely used in agriculture, for cultivar screening as well as for decision making tools. Empirical methods relate directly the remote sensing measured values to crop characteristics. These methods are limited by the important amount of ground data necessary for their calibration. Their validity domain is generally not very well defined as well as the associated uncertainties. Conversely, radiative transfer models allow simulating a wide range of conditions, and... B. De solan, R. Lopez lozano, K. Ma, F. Baret, B. Tisseyre

2. Soybean Canopy Response To Charcoal Rot In Arkansas: Observations Using Crop Circletm (ACS-470).

Charcoal Rot caused by Macrophomina phaseolina is a problem to soybean production, especially in hot and dry areas of southern US. As an approach to develop a fast assessment method of this soil-borne disease, soybean canopy reflectance was recorded with an active optical sensor, the Crop CircleTM ACS-470 in 2009 from a microplot field in Fayetteville, Arkansas. The microplot experiment was designed as a completely randomized factorial experiment with four cultivars, two inoculum... S.S. Kulkarni, M. Doubledee, S.G. Bajwa, J.C. Rupe

3. Canopy Reflectance-based Nitrogen Management Strategies For Subsurface Drip Irrigated Cotton

Nitrogen (N) fertilizer management in subsurface drip irrigation (SDI) systems for cotton (Gossypium hirsutum L.) can be very efficient when N is fertigated on a near daily time step.  Determining the amounts and timing of the N fertigation, however are questions that weekly canopy reflectance measurements may answer.   The main objective of this 3-yr. study was to test two canopy reflectance strategies for adjusting urea ammonium nitrate (UAN) fertilizer in-season injections... K. Bronson

4. Impact Of Precision Leveling On Spatial Variability Of Moisture Conservation In Arid Zones Of Karnataka

... S. Upadhyaya, P. Balakrishnan, B. Pujari, M. Patil, P. Kanannavar

5. Laser Leveling Holds a Lot Of Promise in Water Conservation and Saving in Dry Zones (Drought Prone Areas) of Karnataka

... S. Upadhyaya, P. Balakrishnan, B. Pujari, M. Patil, P. Kanannavar

6. The Effect of Leaf Orientation on Spray Retention on Blackgrass

Spray application efficiency depends on the pesticide application method as well as target properties. A wide range of drop impact angles exists during the spray application process because of drop trajectory and the variability of the leaf orientation. As the effect of impact angle on retention is still poorly documented, laboratory studies were conducted... F. Lebeau, M. Massinon, P. Maréchal, H. Boukhalfa

7. A Low Cost, Modular Robotics Tool Carrier for Precision Agriculture Research

Current research within agricultural crop production focus on using autonomous robot technology to optimize the production efficiency, enhance sustainability and minimize tedious, monotonous and wearing tasks. But progress is slow partly... A. Bøgild, S.H. Nielsen, N.J. Jacobsen, C.L. Jaeger-hansen, R.N. Jørgensen, K. Jensen, O.J. Jørgensen

8. Detection Of Nitrogen Deficiency In Potatoes Using Small Unmanned Aircraft Systems

  Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. A nitrogen rate experiment was established in 2013 with ‘Ranger Russet’ potatoes by applying four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized block design with 3 replicates. A Tetracam Hawkeye sUAS and Agricultural Digital Camera Lite sensor were used to collect imagery with near-infrared... D.A. Horneck, D.J. Gadler, A.E. Bruce, R.W. Turner, C.B. Spinelli, J.J. Brungardt, P.B. Hamm, E. Hunt

9. Precision Nutrient Management Through Use Of LCC And Nutrient Expert In Hybrid Maize Under Laterite Soil Of India

Nutrient management has played a crucial role in achieving self sufficiency in food grain production. Energy crisis resulted in high price index of chemical fertilizers. Coupled with their limited production, fertilizer cost, soil health, sustainability and pollution have gave rise to interest in precision nutrient management tools. Field experiment was conducted to study the effect of variety and nutrient management on the growth and productivity of maize under lateritic belt of West Bengal... M. Banerjee, S. Dutta, G. Bhuiya, G. Malik, D. Maiti

10. Comparison Between Tractor-based and UAV-based Spectrometer Measurements in Winter Wheat

In-season variable rate nitrogen fertilizer application needs a fast and efficient determination of nitrogen status in crops. Common sensor-based monitoring of nitrogen status mainly relies on tractor mounted active or passive sensors. Over the last few years, researchers tested different sensors and indicated the potential of in-season monitoring of nitrogen status by unmanned aerial vehicles (UAVs) in various crops. However, the UAV-platforms and the available sensors are not yet accepted to... M. Gnyp, M. Panitzki, S. Reusch, J. Jasper, A. Bolten, G. Bareth

11. Early Detection of Nitrogen Deficiency in Corn Using High Resolution Remote Sensing and Computer Vision

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which offer... D. Mulla, D. Zermas, D. Kaiser, M. Bazakos, N. Papanikolopoulos, P. Stanitsas, V. Morellas

12. Net Returns and Production Use Efficiency for Optical Sensing and Variable Rate Nitrogen Technologies in Cotton Production

This research evaluated the profitability and N use efficiency of real time on-the-go optical sensing measurements (OPM) and variable-rate technologies (VRT) to manage spatial variability in cotton production in the Mississippi River Basin states of Louisiana, Mississippi, Missouri, and Tennessee. Two forms of OPM and VRT and the existing farmer practice (FP) were used to determine N fertilizer rates applied to cotton on farm fields in the four states. Changes in yields and N rates due to OPM... J.A. Larson, M. Stefanini, D.M. Lambert, X. Yin, C.N. Boyer, J.J. Varco, P.C. Scharf , B.S. Tubaña, D. Dunn, H.J. Savoy, M.J. Buschermohle, D.D. Tyler

13. Integrated Approach to Site-specific Soil Fertility Management

In precision agriculture the lack of affordable methods for mapping relevant soil attributes is a funda­mental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor

14. Controller Performance Criteria for Sensor Based Variable Rate Application

Sensor based variable rate application of crop inputs provides unique challenges for traditional rate controllers when compared to map based applications. The controller set point is typically changing every second whereas with a map based systems the set point changes much less frequently. As applied data files for a sensor based variable rate nitrogen applicator were obtained from a wheat field in north central Oklahoma. These data were analyzed to determine the magnitude and frequency of rate... R.K. Taylor, P. Bennur, J.B. Solie, N. Wang, P. Weckler, W.R. Raun

15. Principal Component Analysis of Rice Production Environment in the Rice Terrace Region

Environmental conditions that affect rice production, such as air temper- ature, relative humidity, solar radiation, effective cation exchangeable capacity (ECEC) of the soil, and total nitrogen in irrigation water, were assessed for 4 paddy fields in Hoshino village, Fukuoka prefecture in Japan. Also, environ- mental factors that affected rice quality (physicochemical properties of rice grains and cooked rice) were identified using data during the beginning of a ripening period (20 days after... Y. Hirai, Y. Beppu, Y. Mori, K. Tomita, K. Hamagami, K. Mori, S. Uchida, S. Inaba

16. Limitations of Yield Monitor Data to Support Field-scale Research

Precision agriculture adoption on farms continues to grow globally on farms.  Today, yield monitors have become standard technologies on grain, cotton and sugarcane harvesters.  In recent years, we have seen industry and even academics leveraging the adoption of precision agriculture technologies to conduct field-scale, on-farm research.  Industry has been a primary driver of the increase in on-farm research globally through the development of software to support on-farm research. ... J.P. Fulton, S.A. Shearer, A. Gauci, A. Lindsey, D. Barker, E. Hawkins

17. A Decision-support Tool to Optimize Mid-season Corn Nitrogen Fertilizer Management from Red, Green, Blue SUAS Images

Corn receives more nitrogen (N) fertilizer per unit area than any other row crop and optimized soil fertility management is needed to help maximize farm profitability. In Arkansas, N fertilizer for corn is delivered in two- or three-split applications. Three-split applications may provide a better match to crop needs and contribute to minimizing yield loss from N deficiency. However, the total amounts are selected based on soil texture and yield goal without accounting for early-season losses... A. Poncet, T. Bui, W. France, T. Roberts, L. Purcell, J. Kelley

18. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System Imagery

In the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-throughput... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff

19. Proximal, Drone, and Satellite Sensors for In-season Variable Nitrogen Rate Application in Corn: a Comparative Study of Fixed-rate and Sensor-based Approaches

Effective nitrogen (N) management is essential for optimizing corn yield and enhancing agricultural sustainability. Traditional N application methods, typically uniform split pre-plant and in-season applications, often neglect the spatial and temporal variability of N requirements across different fields and years, potentially leading to N overuse. With the rise of precision agriculture technologies, it is crucial to reassess these conventional practices. This study had two main objectives: first,... A. Jakhar, A. Bhattarai, L. Bastos, G. Scarpin