Proceedings

Find matching any: Reset
Boiko, I
Roux, S
Berti, M
Rudramuni, T
Ranieri, E
Bisson, G
Fulton, J
LAWAL, J
Liu, X
Li, M
Li, Y
Liburd, O.E
Li, D
Rains, G
Bredemeier, C
Busscher, W.J
Burns, D
Bedard, F
Bazzi, C.L
Add filter to result:
Authors
Li, T
Hu, J
Gao, L
Hu, H
Bai, X
Liu, X
Sun, C
Ji, Z
Qian, J
Li, M
Zhao, L
Li, W
Zhou, C
Du, X
Xie, J
Wu, T
Qu, L
Hao, L
Yang, X
Yang, X
Sun, C
Qian, J
Ji, Z
Qiao, S
Chen, M
Zhao, C
Li, M
Boiko, I
Bedard, F
Reichert, G
Dobbins, R
Pantel, M
Smith, J
LAWAL, J
LAWAL, J
Stone, K
Bauer, P.J
Busscher, W.J
Millen, J.A
Evans, D.E
Strickland, E.E
Yang, X
Li, M
Sun, C
Qian, J
Ji, Z
Souza, E
Schenatto, K
Rodrigues, F
Rocha, D
Bazzi, C.L
Schenatto, K
Bazzi, C.L
Bier, V
Souza, E
Anselmi, A.A
Federizzi , L.C
Bredemeier, C
Molin, J.P
Chen, M
Li, M
Qian, J
Li, W
Wang, Y
Zhang, Y
Yang, X
Zhang, X
Li, Y
Xu, K
Sun, X
Giriyappa, M
Sheshadri, T
Hanumanthappa, D
Shankar, M
Salimath, S.B
Rudramuni, T
Raju, N
Devakumar, N
Mallikaarjuna, G
Malagi, M.T
Jangandi, S
Betzek, N.M
Souza, E.G
Bazzi, C.L
Schenatto, K
Gavioli, A
Maggi, M.F
Gavioli, A
Souza, E.G
Bazzi, C.L
Betzek, N.M
Schenatto, K
Beneduzzi, H.M
Schenatto, K
de Souza, E.G
Bazzi, C.L
Gavioli, A
Betzek, N.M
Beneduzzi, H.M
Bazzi, C.L
Araujo, R
Souza, E.G
Schenatto, K
Gavioli, A
Betzek, N.M
Maharlooei, M
Bajwa, S
Mireei, S.A
Shirzadi, A
Sivarajan, S
Berti, M
Nowatzki, J
Burris, E
Burns, D
McCarter, K.S
Overstreet, C
Wolcott, M
Colley III, R
Fulton, J
Douridas, N
Port, K
Schenatto, K
Souza, E.G
Bazzi, C.L
Gavioli, A
Betzek, N.M
Magalhães, P.S
Bazzi, C.L
Jasse, E.P
Souza, E.G
Magalhães, P.S
Michelon, G.K
Schenatto, K
Gavioli, A
Michelon, G.K
Sanches, G.M
Valente, I.Q
Bazzi, C.L
de Menezes, P.L
Amaral, L.R
Magalhaes, P.G
Colley III, R
Fulton, J
Virk, S
Hawkins, E
Bazzi, C.L
Schenatto, K
Upadhyaya, S
Rojo, F
Gavioli, A
Souza, E.G
Bazzi, C.L
Betzek, N.M
Schenatto, K
de Souza, M.R
Bertani, T.D
Parraga, A
Bredemeier, C
Trentin, C
Doering, D
Susin, A
Negreiros, M
Fadul-Pacheco, L
Bisson, G
Lacroix, R
Séguin, M
Roy, R
Vasseur, E
Lefebvre, D
Betzek, N.M
Souza, E.G
Bazzi, C.L
Magalhães, P.G
Gavioli, A
Schenatto, K
Dall'Agnol, R.W
Colley III, R
Lin, Y
Fulton, J
Shearer, S
Lee, J
Fulton, J
Port, K
Colley III, R
Li, D
Jiang, H
Chen, S
Wang, C
Bazzi, C.L
Silva, F.V
Gebler, L
Souza, E.G
Schenatto, K
Sobjak, R
Dos Santos, R.S
Hachisuca, A.M
Franz, F
Bazzi, C.L
Martins, M.R
Gebler, L
Souza, E.G
Schenatto, K
Sobjak, R
Hachisuca, A.
Franz, F
Pasquel, D
Roux, S
Tisseyre, B
Taylor, J.A
Li, D
Miao, Y
Fernández, .G
Kitchen, N.R
Ransom, C.
Bean, G.M
Sawyer, .E
Camberato, J.J
Carter, .R
Ferguson, R.B
Franzen, D.W
Franzen, D.W
Franzen, D.W
Franzen, D.W
Laboski, C.A
Nafziger, E.D
Shanahan, J.F
Wakahara, S
Miao, Y
Gupta, S
Rosen, C
Mizuta, K
Zhang, J
Li, D
Zhou, C
Lee, W
Pourreza, A
Schueller, J.K
Liburd, O.E
Ampatzidis, Y
Zuniga-Ramirez, G
Karampoiki, M
Todman, L
Mahmood, S
Murdoch, A
Paraforos, D
Hammond, J
Ranieri, E
Bazzi, C.L
Rauber, L.A
Oliveira, W.K
Sobjak, R
Schenatto, K
Gebler, L
Rabello, L.M
Bazzi, C.L
Oliveira, W.K
Sobjak, R
Schenatto, K
Souza, E
Hachisuca, A
Franz, F
Avila, E.N
Bazzi, C.L
Oliveira, W.K
Schenatto, K
Sobjak, R
Rocha, D.M
Byers, C
Virk, S
Meena, R.K
Rains, G
Sobjak, R
Bazzi, C.L
Schenatto, K
Oliveira, W.K
Menegasso, A.E
Topics
Guidance, Robotics, Automation, and GPS Systems
Information Management and Traceability
Precision Crop Protection
Global Proliferation of Precision Agriculture and its Applications
Remote Sensing Applications in Precision Agriculture
Profitability, Sustainability, and Adoption
Information Management and Traceability
Precision Conservation Management
Profitability, Sustainability and Adoption
Precision Horticulture
Precision Nutrient Management
Spatial Variability in Crop, Soil and Natural Resources
Precision Nutrient Management
Decision Support Systems in Precision Agriculture
Proximal Sensing in Precision Agriculture
Spatial and Temporal Variability in Crop, Soil and Natural Resources
Big Data, Data Mining and Deep Learning
On Farm Experimentation with Site-Specific Technologies
Decision Support Systems
Site-Specific Nutrient, Lime and Seed Management
Applications of Unmanned Aerial Systems
Precision Dairy and Livestock Management
Geospatial Data
In-Season Nitrogen Management
Decision Support Systems
Geospatial Data
ISPA Community: Nitrogen
In-Season Nitrogen Management
Big Data, Data Mining and Deep Learning
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Wireless Sensor Networks and Farm Connectivity
Big Data, Data Mining and Deep Learning
Drone Spraying
Artificial Intelligence (AI) in Agriculture
Type
Poster
Oral
Year
2012
2010
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results46 paper(s) found.

1. Timely, Objective, And Accurate Crop Area Estimations And Mapping Using Remote Sensing And Statistical Methods For The Province Of Prince Edward Island, Canada

The provincial government of Prince Edward Island, Canada, required timely, objective, and accurate annual crop area statistics and mapping for 2006 to 2008. Consequently, Statistics Canada conducted a survey incorporating medium- resolution satellite imagery (10 to 30 m) and statistical survey methods. The objective was to produce crop area estimates with a coefficient of variation (CV) as a measure of accuracy, and to produce maps showing the distribution and location of different crops and... F. Bedard, G. Reichert, R. Dobbins, M. Pantel, J. Smith

2. Timeliness In Agricultural Credit Delivery: A Precision Tool For Improved Farm Output And Income For Cocoa Farmers In Nigeria

The agricultural sector in Nigeria is still dominated by peasant farmers’ characterized by low level of income and saving capacity. One way to improve their farm capital investment is by providing them with timely and targeted accessible credit to enhance their production outputs and income because of the clear knowledge of the time specific nature of some farm operations. Then, how timely is the agricultural credit in Nigeria? This study determined the time-lag of credit facility disbursed... J. Lawal

3. Precision Farm Labour Supply For Effective Cocoa Production In Nigeria

In Nigeria, labour is an essential factor in farming. In view of the importance of labour in agriculture, this study was carried out to investigate the sources of labour used in cocoa production. Multi-stage sampling technique was used to select 100 cocoa farming households. The first stage was a random selection of two Local Government Areas (LGAs), the second stage was the selection of two communities from each of the LGAs while the third stage involved the random selection of twenty five cocoa... J. Lawal

4. Variable-rate Irrigation Management For Peanut Using Irrigator Pro

  Variable-rate irrigation has the potential to save substantial water. These water savings will become more important as urban, industrial, and environmental sectors compete with agriculture for available water. However, methodologies to precision-apply water for maximum agronomic and economic utility are needed.  Information is needed to optimally management variable-rate irrigation systems. In this study, we conducted irrigation experiments on peanut to compare... K. Stone, P.J. Bauer, W.J. Busscher, J.A. Millen, D.E. Evans, E.E. Strickland

5. Traceability And Management Information System Of Agricultural Product Quality Safety In China

Agricultural product quality safety is the hot topic in the world. From the technical view, the agricultural production management and traceability are the key measurement for insuring the quality safety. From 2005 until now, we have been investigating... X. Yang, M. Li, C. Sun, J. Qian, Z. Ji

6. Research on Straight-Line Path Tracking Control Methods in an Agricultural Vehicle Navigation System

In the precision agriculture (PA), an agricultural vehicle navigation system is essential and precision of the vehicle path tracking is of great importance in such a system. As straight line operation is the main way of agricultural vehicles on large fields, this paper focuses on the discussion of straight-line path tracking control methods and proposes an agricultural vehicle path tracking algorithm based on the optimal control theory. First, the paper deduces a relative kinematics model of agricultural... T. Li, J. Hu, L. Gao, H. Hu, X. Bai, X. Liu

7. Towards a Multi-Source Record Keeping System for Agricultural Product Traceability

Agricultural production record keeping is the basis of traceability system. To resolve the problem including single method of information acquisition, weak ability of real-time monitoring and low credibility of history information in agricultural production process, the... C. Sun, Z. Ji, J. Qian, M. Li, L. Zhao, W. Li, C. Zhou, X. Du, J. Xie, T. Wu, L. Qu, L. Hao, X. Yang

8. Modeling and Decision Support System for Precision Cucumber Protection in Greenhouses

The plant disease... X. Yang, C. Sun, J. Qian, Z. Ji, S. Qiao, M. Chen, C. Zhao, M. Li

9. System Approach to Implementing Precision Agriculture in Ukraine

... I. Boiko

10. Comparison Of Management Zones Generated By The K-Means And Fuzzy C-Means Methods

The generation of Management Zones (MZ) is an economic alternative to make viable the precision agriculture (RODRIGUES & ZIMBACK, 2002) because they work as operation units for the inputs localized application and as soil and culture sample indicators. For the field division in... E. Souza, K. Schenatto, F. Rodrigues, D. Rocha, C. Bazzi

11. The Influence Of The Interpolation Method In The Management Zones Generation

The definition of management zones (MZ) allows the concepts of precision agriculture (PA) to be used even in small producers. Methods for defining these MZ were created and are being used, obtaining satisfactory results with different crops and parameters (FLEMING & WESTFALL, 2000; ORTEGA & SANTIBÁÑEZ, 2007; MILANI et al., 2006). Through methodologies, the attributes that are influencing the productivity are selected and thematic maps are generated with the... K. Schenatto, C. Bazzi, V. Bier, E. Souza

12. Factors Related To Adoption Of Precision Agriculture Technologies In Southern Brazil

The adoption of technologies which allow the increase of food production with improving quality in addition to reduce the foot prints in the environment is important for agribusiness development. Precision Agriculture (PA) stands out as an option to aid the achievement of these goals. Brazil plays an important role to supply agricultural products and to demand technologies. However, research has focused on technical and economic implementation of PA technologies. Therefore, more information... A.A. Anselmi, L.C. Federizzi , C. Bredemeier, J.P. Molin

13. Study On The Automatic Monitoring Technology For Fuji Fruit Color Based On Machine Vision

  Fruit color is one of the important indicators of quality and commodities. Three kinds of the traditional methods are used to evaluate fruit color, including artificial visual identification, fruit standard color cards and color measurement instrument. These methods are needed to be conducted in the field by persons, which are time-consuming and labored, and also difficult to obtain the dynamic color information of the target fruits in the growth process. This study developed... M. Chen, M. Li, J. Qian, W. Li, Y. Wang, Y. Zhang, X. Yang

14. Research On Measurement Device For NO3- Ion Concentration Of Nutrient Solution

The management of water and ion concentration in nutrient solution is crucial in precision agriculture. Poor management may leads to the increasing of energy consumption and cost as well as low efficiency. The measurement of ion concentration in nutrient solution is prerequisite for optimal control and management of nutrient solution. Real-time detection of NO3-, as an important component of nitrogenous fertilizer, is always a big problem over the world. The... X. Zhang, Y. Li, K. Xu, X. Sun

15. Precision Nutrient Management For Enhancing The Yield Of Groundnut In Peninsular India

               Groundnut is an important oil seed crop grown in an area of around 8 lakh hectares in Karnataka state of India under rainfed conditions. In these situations farmers applied inadequate fertilizer without knowing the initial nutrient status of the soil which resulted in low nutrient use efficiency that intern lead to low productivity of groundnut in these areas. Soil fertility deterioration due to... M. Giriyappa, T. Sheshadri, D. Hanumanthappa, M. Shankar, S.B. Salimath, T. Rudramuni, N. Raju, N. Devakumar, G. Mallikaarjuna, M.T. Malagi, S. Jangandi

16. Rectification of Management Zones Considering Moda and Median As a Criterion for Reclassification of Pixels

Management zones (MZ) make economically viable the application of precision agriculture techniques by dividing the production areas according to the homogeneity of its productive characteristics. The divisions are conducted through empirical techniques or cluster analysis, and, in some cases, the MZ are difficult to be delimited due to isolated cells or patches within sub-regions. The objective of this study was to apply computational techniques that provide smoothing of MZ, so as to become viable... N.M. Betzek, E.G. Souza, C.L. Bazzi, K. Schenatto, A. Gavioli, M.F. Maggi

17. Delineation of Site-specific Management Zones Using Spatial Principal Components and Cluster Analysis

The delineation of site-specific management zones (MZs) can enable economic use of precision agriculture for more producers. In this process, many variables, including chemical and physical (besides yield data) variables, can be used. After selecting variables, a cluster algorithm like fuzzy c-means is usually applied to define the classes. Selection of variables comprise a difficult issue in cluster analysis because these will often influence cluster determination. The goal of this study was... A. Gavioli, E.G. Souza, C.L. Bazzi, N.M. Betzek, K. Schenatto, H. Beneduzzi

18. Data Normalization Methods for Definition of Management Zones

The use of management zones is considered a viable economic alternative for the management of crops due to low cost of adoption as well as economic and environmental benefits. The decision whether or not to normalize the attributes before the grouping process (independent of use) is a problem of methodology, because the attributes have different metric size units, and may influence the result of the clustering process. Thus, the aim of this study was to use a Fuzzy C-Means algorithm to evaluate... K. Schenatto, E.G. De souza, C.L. Bazzi, A. Gavioli, N.M. Betzek, H.M. Beneduzzi

19. Smart Agriculture: A Futuristic Vision of Application of the Internet of Things (IoT) in Brazilian Agriculture

With the economy based on agribusiness, Brazil is an important representative on the world stage in agricultural production, either in terms of quantity or cultivated diversity due to a scenario with vast arable land and favorable climate. There are many crops that are adapteble to soils of the country. Despite the global representation, it is known that the Brazilian agricultural production does not yet have a modern agriculture by restricting the use of new technologies to farmers with better... C.L. Bazzi, R. Araujo, E.G. Souza, K. Schenatto, A. Gavioli, N.M. Betzek

20. Vis/NIR Spectroscopy to Estimate Crude Protein (CP) in Alfalfa Crop: Feasibility Study

The fast and reliable quality determination of alfalfa crop is of interest for producers to make management decisions, the dealers to determine the price, and the dairy producers for livestock management. In this study, the crude protein (CP), one of the main quality indices of alfalfa, was estimated using the visible and near-infrared (Vis/NIR) spectroscopy. A total of 68 samples from various variety trials of alfalfa crop were collected under the irrigated and rainfed conditions. The diffuse... M. Maharlooei, S. Bajwa, S.A. Mireei, A. Shirzadi, S. Sivarajan, M. Berti, J. Nowatzki

21. Evaluation of the Effects of Telone Ii on Nitrogen Management and Yield in Louisiana Delta Cotton

Research indicates that cotton yield on light soils within the alluvial flood plain of the Lower Mississippi delta may be increased by using chemical fumigation applications of Telone II and/or seed treatments to control infestations of plant parasitic nematodes. There is a documented interaction with fumigation and nitrogen and therefore a need to further understand the performance of site- specific treatment strategies for nitrogen (N) and fumigation treatments. In a small plot test conducted... E. Burris, D. Burns, K.S. Mccarter, C. Overstreet, M. Wolcott

22. On-Farm Digital Solutions and Their Associated Value to North American Farmers

Digital tools and data collection have become standard in a wide variety of present day agricultural operations. An array of digital tools, such as high resolution operational mapping, remote sensing, and farm management software offer solutions to many of the problems in modern agriculture. These technologies and services can, if implemented correctly, provide both immediate and long term agronomic value. A growing number of producers in Ohio and around North America question the proper method... R. Colley iii, J. Fulton, N. Douridas, K. Port

23. Use of Farmer’s Experience for Management Zones Delineation

In the management of spatial variability of the fields, the management zone approach (MZs) divides the area into sub-regions of minimal soil and plant variability, which have maximum homogeneity of topography and soil conditions, so that these MZs must lead to the same potential yield. Farmers have experience of which areas of a field have high and low yields, and the use of this knowledge base can allow the identification of MZs in a field based on production history. The objective of this study... K. Schenatto, E.G. Souza, C.L. Bazzi, A. Gavioli, N.M. Betzek, P.S. Magalhães

24. AgDataBox – API (Application Programming Interface)

E-agricultural is an emerging field focusing in the enhancement of agriculture and rural development through improve in information and data processing. The data-intensive characteristic of these domains is evidenced by the great variety of data to be processed and analyzed. Countrywide estimates rely on maps, spectral images from satellites, and tables with rows for states, regions, municipalities, or farmers. Precision agriculture (PA) relies on maps of within field variability of soil and plant... C.L. Bazzi, E.P. Jasse, E.G. Souza, P.S. Magalhães, G.K. Michelon, K. Schenatto, A. Gavioli

25. Optimized Soil Sampling Location in Management Zones Based on Apparent Electrical Conductivity and Landscape Attributes

One of the limiting factors to characterize the soil spatial variability is the need for a dense soil sampling, which prevents the mapping due to the high demand of time and costs. A technique that minimizes the number of samples needed is the use of maps that have prior information on the spatial variability of the soil, allowing the identification of representative sampling points in the field. Management Zones (MZs), a sub-area delineated in the field, where there is relative homogeneity in... G.K. Michelon, G.M. Sanches, I.Q. Valente, C.L. Bazzi, P.L. De menezes, L.R. Amaral, P.G. Magalhaes

26. Field Level Management and Data Verification of Variable Rate Fertilizer Application

Increased cost efficiencies and ease of use make spinner-disc spreaders the primary method of applying fertilizers throughout much of the United States. Recently, advances in spreader systems have enabled multiple fertilizer products to be applied at variable application rates. This provides greater flexibility during site-specific management of in-field fertility. Physical and aerodynamic properties vary for fertilizer granules of different sources and densities, these properties in turn affect... R. Colley iii, J. Fulton, S. Virk, E. Hawkins

27. Optimal Placement of Proximal Sensors for Precision Irrigation in Tree Crops

In agriculture, use of sensors and controllers to apply only the quantity of water required, where and when it is needed (i.e., precision irrigation), is growing in importance. The goal of this study was to generate relatively homogeneous management zones and determine optimal placement of just a few sensors within each management zone so that reliable estimation of plant water status could be obtained to implement precision irrigation in a 2.0 ha almond orchard located in California, USA. First... C.L. Bazzi, K. Schenatto, S. Upadhyaya, F. Rojo

28. Variable Selection and Data Clustering Methods for Agricultural Management Zones Delineation

Delineation of agricultural management zones (MZs) is the delimitation, within a field, of a number of sub-areas with high internal similarity in the topographic, soil and/or crop characteristics. This approach can contribute significantly to enable precision agriculture (PA) benefits for a larger number of producers, mainly due to the possibility of reducing costs related to the field management. Two fundamental tasks for the delineation of MZs are the variable selection and the cluster analysis.... A. Gavioli, E.G. Souza, C.L. Bazzi, N.M. Betzek, K. Schenatto

29. Wheat Biomass Estimation Using Visible Aerial Images and Artificial Neural Network

In this study, visible RGB-based vegetation indices (VIs) from UAV high spatial resolution (1.9 cm) remote sensing images were used for modeling shoot biomass of two Brazilian wheat varieties (TBIO Toruk and BRS Parrudo). The approach consists of a combination of Artificial Neural Network (ANN) with several Vegetation Indices to model the measured crop biomass at different growth stages. Several vegetation indices were implemented: NGRDI (Normalized Green-Red Difference Index), CIVE (Color Index... M.R. De souza, T.D. Bertani, A. Parraga, C. Bredemeier, C. Trentin, D. Doering, A. Susin, M. Negreiros

30. Usage of Milk Revenue Per Minute of Boxtime to Assess Cows Selection and Farm Profitability in Automatic Milking Systems

The number of farms implementing robotic milking systems, usually referred as automatic milking systems (AMS), is increasing rapidly. AMS efficiency is a priority to achieve high milk production and higher incomes from dairy herds. Recent studies suggested that milkability (i.e., amount of milk produced per total time spent in the AMS [kg milk/ minute of boxtime]) could be used for as a criteria for genetic evaluations. Therefore, an indicator of milkability was developed, which combines economical... L. Fadul-pacheco, G. Bisson, R. Lacroix, M. Séguin, R. Roy, E. Vasseur, D. Lefebvre

31. Application of Routines for Automation of Geostatistical Analysis Procedures and Interpolation of Data by Ordinary Kriging

Ordinary kriging (OK) is one of the most suitable interpolation methods for the construction of thematic maps used in precision agriculture. However, the use of OK is complex. Farmers/agronomists are generally not highly trained to use geostatistical methods to produce soil and plant attribute maps for precision agriculture and thus ensure that best management approaches are used. Therefore, the objective of this work was to develop and apply computational routines using procedures and geostatistical... N.M. Betzek, E.G. Souza, C.L. Bazzi, P.G. Magalhães, A. Gavioli, K. Schenatto, R.W. Dall'agnol

32. Development of a Graphical User Interface for Spinner-Disc Spreader Calibration and Spread Uniformity Assessment

Broadcast fertilizer distribution through spinner-disc spreaders remain the most cost-effective, and least time consuming process to apply the needed soil amendments for the next crop. Spreaders currently available to producers enable them to apply a variety of granular products at varying rates, blends, and swath widths. In order to uniformly apply granular fertilizer or lime, the spreader should be calibrated by standard pan testing with any change in spreader settings, application rate, or... R. Colley iii, Y. Lin, J. Fulton, S. Shearer

33. Overview and Value of Digital Technologies for North American Soybean Producers

In the current state of digital agriculture, many digital technologies and services are offered to assist North American soybean producers.  Opportunities for capturing and analyzing information related to soybean production methods are made available through the adoption of these technologies.  However, often it is difficult for producers to know which digital tools and services are available to them or understand the value they can provide.  The objective of this... J. Lee, J. Fulton, K. Port, R. Colley iii

34. Estimating Litchi Canopy Nitrogen Content Using Simulated Multispectral Remote Sensing Data

This study aims at evaluating the performance of seven highly spatial resolution remote sensing data in litchi canopy nitrogen content estimation. The litchi canopy reflectance were collected by ASD field spectrometer. Then the canopy spectral data were resampled based on the spectral response functions of each satellite sensors (Geo-eye, GF-WFV1, Rapid-eye, WV-2, Landsat 8, WV-3, and Sentinel-2). The spectral indices in literature were derived based on the simulated data. Meanwhile, the successive... D. Li, H. Jiang, S. Chen, C. Wang

35. Fruit Fly Electronic Monitoring System

Insects are a constant threat to agriculture, especially the cultivation of various types of fruits such as apples, pears, guava, etc. In this sense, it is worth mentioning the Anastrepha genus flies (known as fruit fly), responsible for billionaire losses in the fruit growing sector around the world, due to the severity of their attack on orchards. In Brazil, this type of pests has been controlled in most product areas by spraying insecticides, which due to the need for prior knowledge regarding... C.L. Bazzi, F.V. Silva, L. Gebler, E.G. Souza, K. Schenatto, R. Sobjak, R.S. Dos santos, A.M. Hachisuca, F. Franz

36. Yield Mapping in Fruit Farming

Due to the importance of increasing the quantity and quality of world agricultural production, the use of technologies to assist in production processes is essential. Despite this, a timid adoption by precision agriculture (PA) technologies is verified by the Brazilian fruit producers, even though it is one of the segments that had been stood out in recent years in the country's economy. In the PA context, yield maps are rich sources of information, especially by species harvested through... C.L. Bazzi, M.R. Martins, L. Gebler, E.G. Souza, K. Schenatto, R. Sobjak, A. . Hachisuca, F. Franz

37. Comparison of Different Aspatial and Spatial Indicators to Assess Performance of Spatialized Crop Models at Different Within-field Scales

Most current crop models are point-based models, i.e. they simulate agronomic variables on a spatial footprint on which they were initially designed (e.g. plant, field, region scale). To assess their performances, many indicators based on the comparison of estimated vs observed data, can be used such as root mean square error (RMSE) or Willmott index of agreement (D-index) among others. However, shifting model use from a strategic objective to tactical in-season management is becoming a significant... D. Pasquel, S. Roux, B. Tisseyre, J.A. Taylor

38. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US Midwest

Effective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan

39. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine Learning

Precision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li

40. Strawberry Pest Detection Using Deep Learning and Automatic Imaging System

Strawberry growers need to monitor pests to determine the options for pest management to reduce damage to yield and quality.  However, manually counting strawberry pests using a hand lens is time-consuming and biased by the observer. Therefore, an automated rapid pest scouting method in the strawberry field can save time and improve counting consistency. This study utilized six cameras to take images of the strawberry leaf. Due to the relatively small size of the strawberry pest, six cameras... C. Zhou, W. Lee, A. Pourreza, J.K. Schueller, O.E. Liburd, Y. Ampatzidis, G. Zuniga-ramirez

41. A Bayesian Network Approach to Wheat Yield Prediction Using Topographic, Soil and Historical Data

Bayesian Network (BN) is the most popular approach for modeling in the agricultural domain. Many successful applications have been reported for crop yield prediction, weed infestation, and crop diseases. BN uses probabilistic relationships between variables of interest and in combination with statistical techniques the data modeling has many advantages. The main advantages are that the relationships between variables can be learned using the model as well as the potential to deal with missing... M. Karampoiki, L. Todman, S. Mahmood, A. Murdoch, D. Paraforos, J. Hammond, E. Ranieri

42. Portable Soil EC - Development of an Electronic Device for Determining Soil Electrical Conductivity

Decision-making in agriculture demands continuous monitoring, a factor that propels the advancement of tools within Agriculture 4.0. In this context, understanding soil characteristics is essential. Electrical conductivity (EC) sensors play a pivotal role in this comprehension. Given this backdrop, the core motivation of this research was developing an accessible and effective electronic device to measure the apparent EC of the soil. It provides features like geolocation, recording of the date... C.L. Bazzi, L.A. Rauber, W.K. Oliveira, R. Sobjak, K. Schenatto, L. Gebler, L.M. Rabello

43. AgDataBox-IoT - Managing IoT Data and Devices on Precision Agriculture

The increasing global population has resulted in a substantial demand for nourishment, which has prompted the agricultural sector to investigate ways to improve efficiency. Precision agriculture (PA) uses advanced technologies such as the Internet of Things (IoT) and sensor networks to collect and analyze field information. Although the advantages are numerous, the available data storage, management, and analysis resources are limited. Therefore, creating and providing a user-friendly web application... C.L. Bazzi, W.K. Oliveira, R. Sobjak, K. Schenatto, E. Souza, A. Hachisuca, F. Franz

44. Geographic Database in Precision Agriculture for the Development of AI Research

Agriculture 4.0 has profoundly transformed production processes by incorporating technologies such as Precision Agriculture, Artificial Intelligence, the Internet of Things, and telemetry. This evolution has enabled more accurate and timely decision-making in agriculture. In response to this movement, the Precision Agriculture Laboratory (AgriLab) of UTFPR, located in Medianeira, proposes the establishment of a consistent and standardized database. This database is continually updated with surveys... E.N. Avila, C.L. Bazzi, W.K. Oliveira, K. Schenatto, R. Sobjak, D.M. Rocha

45. Spray Deposition Characterization of Uniform and Variable-rate Applications with Spray Drones

The use of unmanned aerial application systems (also known as spray drones) has seen rapidly increasing interest in recent years due to their potential to allow for timely application of pesticides and being able to apply in areas inaccessible to ground application sprayers. Newer spray drone models’ have improved application systems such as rotary atomizers for creating spray droplets and capabilities such as variable-rate (VR) application for site-specific pesticide applications. An investigation... C. Byers, S. Virk, R.K. Meena, G. Rains

46. AgDataBox-IA – Web Application with Artificial Intelligence for Agricultural Data Analysis in Precision Agriculture

Agriculture has been continually evolving, incorporating hardware, software, sensors, aerial surveys, soil sampling for chemical, physical, and granulometric analysis (based on sample grids), and microclimatic data, leading to a substantial volume of data. This requires platforms to store, manage, and transform these data into actionable information for decision-making in the field. In this regard, Artificial Intelligence (AI) is the most widely used tool globally to mine and transform vast data... R. Sobjak, C.L. Bazzi, K. Schenatto, W.K. Oliveira, A.E. Menegasso