Proceedings

Find matching any: Reset
Harari, A
Zhang, Y
Hawks, A
Hessel, R
Zhao, H
Hallema, D.W
Kulczycki, G
Add filter to result:
Authors
Amakor, X
Jacobson, A.R
Cardon, G.E
Hawks, A
Barnes, W
Gumiere, S.J
Périard, Y
Caron, J
Hallema, D.W
Lafond, J.A
Grocholski, P
Stepien, P
Kulczycki, G
Michalski, A
Krogmeier, J
Buckmaster, D
Ault, A
Wang, Y
Zhang, Y
Layton, A
Noel, S
Balmos, A
Yang, C
Suh, C
Guo, W
Zhao, H
Zhang, J
Eyster, R
Yang, C
Zhao, H
Guo, W
Zhang, J
Suh, C
Fritz, B.K
Rozenstein, O
Cohen, Y
Alchanatis , V
Behrendt, K
Bonfil, D.J
Eshel, G
Harari, A
Harris, W.E
Klapp, I
Laor, Y
Linker, R
Paz-Kagan, T
Peets, S
Rutter, M.S
Salzer, Y
Lowenberg-DeBoer, J
Sharda, A
Dua, A
Schapaugh, W
Hessel, R
Buckmaster, D
Krogmeier, J
Evans, J
Zhang, Y
Glavin, M
Byrne, D
Harkin, S.J
Basir, M.S
Krogmeier, J
Zhang, Y
Buckmaster, D
Dua, A
Sharda, A
Schapaugh, W
Hessel, R
Rai, S
Zhang, Y
Bailey, J
Balmos, A
Castiblanco Rubio, F.A
Krogmeier, J
Buckmaster, D
Love, D
Zhang, J
Allen, M
Topics
Remote Sensing Applications in Precision Agriculture
Sensor Application in Managing In-season CropVariability
Precision Nutrient Management
Profitability and Success Stories in Precision Agriculture
Applications of Unmanned Aerial Systems
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Drivers and Barriers to Adoption of Precision Ag Technologies or Digital Agriculture
Artificial Intelligence (AI) in Agriculture
Data Analytics for Production Ag
Edge Computing and Cloud Solutions
Type
Poster
Oral
Year
2010
2014
2018
2022
2024
Home » Authors » Results

Authors

Filter results12 paper(s) found.

1. Apparent Electrical Conductivity Calibration In Semiarid Soils: Ion-pair Correction

The electromagnetic induction sensor (EM38DD) is a field proven portable sensor for rapid measurement of the apparent electrical conductivity (ECa) of soils. Calibration with the electrical conductivity of saturation paste extracts is the most widely used method to correlate ECa with the effective electrical conductivity (ECe). A drawback of this method is the formation of ion pairs in the high ionic strength saturated paste extracts, which effectively decreases the measured ECe, leading to the... X. Amakor, A.R. Jacobson, G.E. Cardon, A. Hawks, W. Barnes

2. Detection Of Drainage Failure In Reconstructed Cranberry Soils Using Time Series Analysis

A cranberry farm is often a semi-closed water system, where water is applied by means of irrigation and drained using an artificial drainage system. Cranberry bogs must be drained to the water level inside the surrounding ditches in order to maintain an optimal pore pressure within the root zone, which is important for a number of reasons. First of all, Phytophthara causing root rot are commonly associated with irrigation with contaminated surface water (Oudemans, 1999)... S.J. Gumiere, Y. Périard, J. Caron, D.W. Hallema, J.A. Lafond

3. Comparison Of The Variable Potassium Fertilization On The Light And Heavy Soils

Introduction. Determination of the spatial variability of the nutrient levels in soil facilitated adaptation of the fertilizer doses to the soluble forms availability. Nowadays, an increasing use of this method of the fertilizer application is observed, with this being associated with both economical and environmental advantages, as well as, with growing assortment of the purpose-built agricultural instrumentation. An accurate determination of the spatial distribution... P. Grocholski, P. Stepien, G. Kulczycki, A. Michalski

4. Use Cases for Real Time Data in Agriculture

Agricultural data of many types (yield, weather, soil moisture, field operations, topography, etc.) comes in varied geospatial aggregation levels and time increments. For much of this data, consumption and utilization is not time sensitive. For other data elements, time is of the essence. We hypothesize that better quality data (for those later analyses) will also follow from real-time presentation and application of data for it is during the time that data is being collected that errors can be... J. Krogmeier, D. Buckmaster, A. Ault, Y. Wang, Y. Zhang, A. Layton, S. Noel, A. Balmos

5. Evaluation of Image Acquisition Parameters and Data Extraction Methods on Plant Height Estimation with UAS Imagery

Aerial imagery from unmanned aircraft systems (UASs) has been increasingly used for field phenotyping and precision agriculture. Plant height is one important crop growth parameter that has been estimated from 3D point clouds and digital surface models (DSMs) derived from UAS-based aerial imagery. However, many factors can affect the accuracy of aerial plant height estimation. This study examined the effects of image overlap, pixel resolution, and data extraction methods on estimation... C. Yang, C. Suh, W. Guo, H. Zhao, J. Zhang, R. Eyster

6. Influence of Ground Control Points and Processing Parameters on UAS Image Mosaicking for Plant Height Estimation

Digital surface models (DSMs) and 3D point clouds, generated using overlapping images from unmanned aircraft systems (UASs), are often used for plant height estimation in phenotyping and precision agriculture. This study examined the effects of the quantity and placement of ground control points (GCPs) and image processing parameters on the creation of DSMs and 3D point clouds for plant height estimation. A 2-ha field containing multiple experimental plots with four crops (corn, cotton, sorghum,... C. Yang, H. Zhao, W. Guo, J. Zhang, C. Suh, B.K. Fritz

7. Data-driven Agriculture and Sustainable Farming: Friends or Foes?

Sustainability in our food and fiber agriculture systems is inherently knowledge intensive.  It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience.  Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer

8. Automated Pipeline for Research Plot Extraction and Multi-polygon Shapefile Generation for Phenotype and Precision Agriculture Applications

The plant breeding community increasingly adopt remote sensing platforms like unmanned aerial vehicles (UAVs) to collect phenotype data on various crops. These platforms capture high-resolution multi-spectral (MS) image data during extensive field trials, enabling concurrent evaluation of hundreds of plots with diverse seed varieties and management practices. Currently, the plant breeders rely on manual and intricate data extraction, processing, and analysis of high-resolution imagery to draw... A. Sharda, A. Dua, W. Schapaugh, R. Hessel

9. In-Field and Loading Crop: A Machine Learning Approach to Classify Machine Harvesting Operating Mode

This paper addresses the complex issue of classifying mode of operation (active, idle, stationary unloading, on-the-go unloading, turning) and coordinating agricultural machinery. Agricultural machinery operators must operate within a limited time window to optimize operational efficiency and reduce costs. Existing algorithms for classifying machinery operating modes often rely on heuristic methods. Examples include rules conditioned on machine speed, bearing angle and operational time... D. Buckmaster, J. Krogmeier, J. Evans, Y. Zhang, M. Glavin, D. Byrne, S.J. Harkin

10. Private Simple Databases for Digital Records of Contextual Events and Activities

Farmers’ commitment and ability to keep good records varies tremendously. Records and notes are often cryptic, misplaced, or damaged and for many, remain unused. If such information were recorded digitally and stored in the cloud, we immediately solve some access and consistency issues and make this data FAIR (findable, accessible, interoperable, reusable). More importantly, interoperable digital formats can also enable mining for insights and analysis... M.S. Basir, J. Krogmeier, Y. Zhang, D. Buckmaster

11. Rapid Assessment of Yield Using Machine Learning Models and UAV Multispectral Imagery for Soybean Breeding Plots

Advances in precision agriculture in data collection, crop monitoring, screening, and management over the 10-15 years are revolutionizing on-farm agricultural research trials. In crop breeding plots, this approach is called "High Throughput Phenotyping", which uses innovative technology to extract phenotypic data for large populations. Remote sensing has become one of the commonly used platforms for rapid acquisition of imagery data at spatial and temporal scale. Particularly, the unmanned... A. Dua, A. Sharda, W. Schapaugh, R. Hessel, S. Rai

12. Enabling Field-level Connectivity in Rural Digital Agriculture with Cloud-based LoRaWAN

The widespread adoption of next-generation digital agriculture technologies in rural areas faces a critical challenge in the form of inadequate field-level connectivity. Traditional approaches to connecting people fall short in providing cost-effective solutions for many remote agricultural locations, exacerbating the digital divide. Current cellular networks, including 5G with millimeter wave technology, are urban-centric and struggle to meet the evolving digital agricultural needs, presenting... Y. Zhang, J. Bailey, A. Balmos, F.A. Castiblanco rubio, J. Krogmeier, D. Buckmaster, D. Love, J. Zhang, M. Allen