Proceedings

Find matching any: Reset
Balasundram, S.K
Bhattarai, B
Burns, J
Buelvas, R
Bhansali, S
Bonomi, A
Balbinot, A
Boote, K
Brase, T.A
Bosak, A
Bailey, J
Beneduzzi, H.M
Butts, C
Belford, R
Bean, G
Berzins, R
Bolfe, E
Bier, V
Bae, K
Berger-Wolf, T
Boyko, Y.I
Balzarini, M
Brorsen, B.W
Banerjee, M
Bari, M.A
Borbás, Z
Bridges, R.W
Add filter to result:
Authors
Chung, S
Kong, J
Huh, Y
Bae, K
Hur, S
Lee, D
Chae, Y
Greer, K
Burns, J
Bremer, E
Boyko, Y.I
Adamchuk, V.I
Schenatto, K
Bazzi, C.L
Bier, V
Souza, E
Rosenberg, O
Alchanatis, V
Saranga, Y
Bosak, A
Cohen, Y
Banerjee, M
Dutta, S
Bhuiya, G
Malik, G
Maiti, D
Bean, G
Kitchen, N.R
Franzen, D.W
Miles, R.J
Ransom, C
Scharf, P
Camberato, J
Carter, P
Ferguson, R.B
Fernandez, F.G
Laboski, C
Nafziger, E
Sawyer, J
Shanahan, J
McEntee, P
Bennett, S
Trotter, M
Belford, R
Harper, J
Gavioli, A
Souza, E.G
Bazzi, C.L
Betzek, N.M
Schenatto, K
Beneduzzi, H.M
Schenatto, K
de Souza, E.G
Bazzi, C.L
Gavioli, A
Betzek, N.M
Beneduzzi, H.M
Poncet, A.M
Fulton, J.P
McDonald, T.P
Knappenberger, T
Bridges, R.W
Shaw, J
Balkcom, K
Roberts, D.C
Brorsen, B.W
Raun, W.R
Solie, J.B
Brase, T.A
Sanches, G.M
Cardoso, T.F
Chagas, M.F
Luciano, A.C
Duft, D.G
Magalhães, P.S
Franco, H.C
Bonomi, A
Balasundram, S.K
Chong, Y
Mohd Hanif, A
Kitchen, N.R
Yost, M.A
Ransom, C.J
Bean, G
Camberato, J
Carter, P
Ferguson, R
Fernandez, F
Franzen, D
Laboski, C
Nafziger, E
Sawyer, J
Burton, L
Jayachandran, K
Bhansali, S
Mekonnen, Y
Sarwat, A
Leksono, E
Adamchuk, V
Whalen, J
Buelvas, R
Charvat, K
Berzins, R
Bergheim, R
Zadrazil, F
Macura, J
Langovskis, D
Snevajs, H
Kubickova, H
Horakova, S
Charvat Jr., K
Charvat, K
Kepka, M
Berzins, R
Zadrazil, F
Langovskis, D
Musil, M
Balboa, G
Puntel, L
Melchiori, R
Ortega, R
Tiscornia, G
Bolfe, E
Roel, A
Scaramuzza, F
Best, S
Berger, A
Hansel, D
Palacios, D
Balboa, G
Degioanni, A
Bongiovanni, R
Melchiori, R
Cerliani, C
Scaramuzza, F
Bongiovanni, M
Gonzalez, J
Balzarini, M
Videla, H
Amin, S
Esposito, G
Gallios, I
Vellidis, G
Butts, C
Da Silva, M.L
Alves de Lima, J.
Balbinot, A
Molin, J.P
Neupane, J
Joshi, N
Fulton, J.P
Khanal, S
B K, A
Bhattarai, B
Kulmany, I.M
Horváth, B
Kukorelli, G
Zsebő, S
Stencinger, D
Borbás, Z
Pecze, R
Bede, L
Varga, Z
Kósa, A
Pinke, G
Hashim, Z.K
Hegedűs, G
Abdinoor, J.A
Agampodi, G.S
Bari, M.A
Bakshi, A
Witt, T
Caragea, D
Jagadish, K
Felderhoff, T
Pramanik, S
Choton, J
Zhang, Y
Bailey, J
Balmos, A
Castiblanco Rubio, F.A
Krogmeier, J
Buckmaster, D
Love, D
Zhang, J
Allen, M
Maktabi, S
Vellidis, G
Hoogenboom, G
Boote, K
Pilcon, C
Fountain, J
Sysskind, M
Kukal, S
Koppelman, G
Fulton, J.P
Khanal, S
Berger-Wolf, T
Balasundram, S.K
Topics
Emerging Issues in Precision Agriculture (Energy, Biofuels, Climate Change)
Modeling and Geo-statistics
Spatial Variability in Crop, Soil and Natural Resources
Precision Conservation Management
Remote Sensing Applications in Precision Agriculture
Precision Nutrient Management
Precision Nutrient Management
Proximal Sensing in Precision Agriculture
Decision Support Systems in Precision Agriculture
Spatial Variability in Crop, Soil and Natural Resources
Remote Sensing for Nitrogen Management
Education and Training in Precision Agriculture
Precision Agriculture and Global Food Security
Precision Horticulture
In-Season Nitrogen Management
Education and Outreach in Precision Agriculture
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Geospatial Data
Drainage Optimization and Variable Rate Irrigation
ISPA Community: Latin America
Education and Outreach in Precision Agriculture
Decision Support Systems
Data Analytics for Production Ag
Site-Specific Nutrient, Lime and Seed Management
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Big Data, Data Mining and Deep Learning
Edge Computing and Cloud Solutions
Decision Support Systems
Precision Dairy and Livestock Management
Meeting
Type
Poster
Oral
Year
2012
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results31 paper(s) found.

1. Evaluation of Photovoltaic Modules at Different Installation Angles and Times of the Day

Several electricity-consuming components for cooling and heating, illumination, ventilation, and irrigation are used to maintain proper environments of protected crop cultivation facilities. Photovoltaic system is considered as one of the most promising alternative power source for protected cultivation. Effects of environment,... S. Chung, J. Kong, Y. Huh, K. Bae, S. Hur, D. Lee, Y. Chae

2. Evaluation of PRS(TM) Probe Technology and Model for Variable Rate Fertilizer Application in Hummocky Fields in Saskatchewan

... K. Greer, J. Burns, E. Bremer

3. Analysis of Spatial Variability of Key Soil Attributes In North-Central Ukraine

As Ukrainian agricultural production undergoes major changes, a better understanding of the diversity of land resources is needed to optimize management.  Dealing with large fields (over 100 ha in size) with non-uniform growing conditions presents an opportunity for site-specific management of agricultural inputs. This publication describes our 2010 pilot study on the implementation of integrated mapping of apparent soil electrical conductivity and field topography to guide soil sampling... Y.I. Boyko, V.I. Adamchuk

4. The Influence Of The Interpolation Method In The Management Zones Generation

The definition of management zones (MZ) allows the concepts of precision agriculture (PA) to be used even in small producers. Methods for defining these MZ were created and are being used, obtaining satisfactory results with different crops and parameters (FLEMING & WESTFALL, 2000; ORTEGA & SANTIBÁÑEZ, 2007; MILANI et al., 2006). Through methodologies, the attributes that are influencing the productivity are selected and thematic maps are generated with the... K. Schenatto, C. Bazzi, V. Bier, E. Souza

5. Are Thermal Images Adequate For Irrigation Management?

Thermal crop sensing technologies have potential as tools for monitoring and mapping crop water status, improving water use efficiency and precisely managing irrigation. As thermal sensors and imagers became more affordable, various platforms were examined to allow for canopy- and field-scale acquisitions of canopy temperature and to extract maps of water status variability. Various canopy temperature statistics and crop water stress index (CWSI) were used to estimate water status... O. Rosenberg, V. Alchanatis, Y. Saranga, A. Bosak, Y. Cohen

6. Precision Nutrient Management Through Use Of LCC And Nutrient Expert In Hybrid Maize Under Laterite Soil Of India

Nutrient management has played a crucial role in achieving self sufficiency in food grain production. Energy crisis resulted in high price index of chemical fertilizers. Coupled with their limited production, fertilizer cost, soil health, sustainability and pollution have gave rise to interest in precision nutrient management tools. Field experiment was conducted to study the effect of variety and nutrient management on the growth and productivity of maize under lateritic belt of West Bengal... M. Banerjee, S. Dutta, G. Bhuiya, G. Malik, D. Maiti

7. Modifying the University of Missouri Corn Canopy Sensor Algorithm Using Soil and Weather Information

Corn production across the U.S. Corn belt can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing the amount of N lost to these processes. However, N recommendation algorithms used in conjunction with canopy sensor measurements have not proven accurate in making N recommendations... G. Bean, N.R. Kitchen, D.W. Franzen, R.J. Miles, C. Ransom, P. Scharf, J. Camberato, P. Carter, R.B. Ferguson, F. Fernandez, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

8. Mapping Spatial Production Stability in Integrated Crop and Pasture Systems: Towards Zonal Management That Accounts for Both Yield and Livestock-landscape Interactions.

Precision farming technologies are now widely applied within Australian cropping systems. However, the use of spatial monitoring technologies to investigate livestock and pasture interactions in mixed farming systems remains largely unexplored. Spatio-temporal patterns of grain yield and pasture biomass production were monitored over a four-year period on two Australian mixed farms, one in the south-west of Western Australia and the other in south-east Australia. A production stability index was... P. Mcentee, S. Bennett, M. Trotter, R. Belford, J. Harper

9. Delineation of Site-specific Management Zones Using Spatial Principal Components and Cluster Analysis

The delineation of site-specific management zones (MZs) can enable economic use of precision agriculture for more producers. In this process, many variables, including chemical and physical (besides yield data) variables, can be used. After selecting variables, a cluster algorithm like fuzzy c-means is usually applied to define the classes. Selection of variables comprise a difficult issue in cluster analysis because these will often influence cluster determination. The goal of this study was... A. Gavioli, E.G. Souza, C.L. Bazzi, N.M. Betzek, K. Schenatto, H. Beneduzzi

10. Data Normalization Methods for Definition of Management Zones

The use of management zones is considered a viable economic alternative for the management of crops due to low cost of adoption as well as economic and environmental benefits. The decision whether or not to normalize the attributes before the grouping process (independent of use) is a problem of methodology, because the attributes have different metric size units, and may influence the result of the clustering process. Thus, the aim of this study was to use a Fuzzy C-Means algorithm to evaluate... K. Schenatto, E.G. De souza, C.L. Bazzi, A. Gavioli, N.M. Betzek, H.M. Beneduzzi

11. Measurement of In-field Variability for Active Seeding Depth Applications in Southeastern US

Proper seeding depth control is essential to optimize row-crop planter performance, and adjustment of planter settings to within field spatial variability is required to maximize crop yield potential. The objectives of this study were to characterize planting depth response to varying soil conditions within fields, and to discuss implementation of active seeding depth technologies in Southeastern US. This study was conducted in 2014 and 2015 in central Alabama for non-irrigated maize (Zea mays... A.M. Poncet, J.P. Fulton, T.P. Mcdonald, T. Knappenberger, R.W. Bridges, J. Shaw, K. Balkcom

12. Prediction of Nitrogen Needs with Nitrogen-rich Strips and Ramped Nitrogen Strips

Both nitrogen rich strips and ramped nitrogen strips have been used to estimate topdress nitrogen needs for winter wheat based on in-season optical reflectance data. The ramped strip system places a series of small plots in each field with increasing levels of nitrogen to determine the application rate at which predicted yield response to nitrogen reaches a plateau. The nitrogen-rich strip system uses a nitrogen fertilizer optimization algorithm based on optical reflectance measures from the nitrogen-rich... D.C. Roberts, B.W. Brorsen, W.R. Raun, J.B. Solie

13. Teaching Critical Thinking Skills Using Geospatial Technology As Instructional Tools

Techniques in data collection and analysis of data are important concepts for students of precision farming. Also needed in conjunction with these concepts are critical thinking and problem solving skills. Employers often list critical thinking skills as one of the most important characteristics for new employees. Helping students experience and acquire critical thinking skills can be difficult. Geospatial technologies are not only useful precision farming tools, they are also educational tools... T.A. Brase

14. Economic and Environmental Impacts in Sugarcane Production to Meet the Brazilian Ethanol Demands by 2030: The Role of Precision Agriculture

The agreement signed at COP-21 reaffirms the vital compromise of Brazil with sugarcane and ethanol production. To meet the established targets, the ethanol production should be 54 billion liters in 2030. From the agronomic standpoint, two alternatives are possible; increase the planted area and/or agricultural yield. The present study aimed to evaluate the economic and environmental impacts in sugarcane production meeting the established targets in São Paulo state. In this context, were... G.M. Sanches, T.F. Cardoso, M.F. Chagas, A.C. Luciano, D.G. Duft, P.S. Magalhães, H.C. Franco, A. Bonomi

15. Monitoring Potassium Levels in Peat-Grown Pineapple Using Selected Spectral Ratios

In this study, we assessed the biophysical changes within pineapple (var. MD2) in response to different potassium (K) rates using a hyperspectral approach. K deficiency was detected at 171 days after planting. Shortage of K also exhibited a shift in red edge towards shorter wavelengths between 500-700 nm. In addition, spectral ranges of 430 nm and 680 nm, as well as 680-752 nm were found to be most effective in differentiating spectral response to varying K rates. Three vegetation indices, i.e.... S.K. Balasundram, Y. Chong, A. Mohd hanif

16. Utilizing Weather, Soil, and Plant Condition for Predicting Corn Yield and Nitrogen Fertilizer Response

Improving corn (Zea mays L.) nitrogen (N) fertilizer rate recommendation tools should increase farmer’s profits and help mitigate N pollution. Weather and soil properties have repeatedly been shown to influence crop N need. The objective of this research was to improve publicly-available N recommendation tools by adjusting them with additional soil and weather information. Four N recommendation tools were evaluated across 49 N response trials conducted in eight U.S. states over three growing... N.R. Kitchen, M.A. Yost, C.J. Ransom, G. Bean, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer

17. Exploring Wireless Sensor Network Technology in Sustainable Okra Garden: A Comparative Analysis of Okra Grown in Different Fertilizer Treatments

The goal of this project was to explore commercial agricultural and irrigation sensor kits and to discern if the commercial wireless sensor network (WSN) is a viable tool for providing accurate real-time farm data at the nexus of food energy and water. The smart garden consists of two different varieties of Abelmoschus esculentus (okra) planted in raised beds, each grown under two different fertilizer treatments. Soil watermark sensors were programed to evaluate soil moisture and dictate irrigation... L. Burton, K. Jayachandran, S. Bhansali, Y. Mekonnen, A. Sarwat

18. Development of a Manual Soil Sensing System for Measuring Multiple Chemical Soil Properties in the Field

Variable Rate Fertilizer Application (VRA) requires the input of soil chemical data. One of the preferred methods for analyzing soil chemical properties in the field is by using Ion Selective Electrodes (ISEs). To accommodate portability in soil measurements, a manual soil sampling system was developed. Nitrate, Phosphate and pH ISEs were integrated to provide a general outlook on the condition of essential soil nutrients. These ISEs were placed on a modified hand-held soil sampler equipped... E. Leksono, V. Adamchuk, J. Whalen, R. Buelvas

19. Map Whiteboard As Collaboration Tool for Smart Farming Advisory Services

Precision agriculture, a branch of smart farming, holds great promise for modernization of European agriculture both in terms of environmental sustainability and economic outlook.  The vast data archives made available through Copernicus and related infrastructures, combined with a low entry threshold into the domain of AI-technologies has made it possible, if not outright easy, to make meaningful predictions that divides  individual agricultural fields into zones where variable rates... K. Charvat, R. Berzins, R. Bergheim, F. Zadrazil, J. Macura, D. Langovskis, H. Snevajs, H. Kubickova, S. Horakova, K. Charvat jr.

20. SmartAgriHubs FIE20 - Groundwater and Meteo Sensors and Earth Observation for Precision Agriculture

The solution developed under the SmartAgriHubs project in the scope of the Flagship Innovation Experiment FIE20 Groundwater and meteo sensors is an expert system to support farmers in decision-making process and planning process of field interventions. This FIE20 solution integrates various data sources and different analytical processes in a complete system and provides users an easy-to-use web map application as a common user interface. The FIE20 system integrates components developed during... K. Charvat, M. Kepka, R. Berzins, F. Zadrazil, D. Langovskis, M. Musil

21. How Digital is Agriculture in South America? Adoption and Limitations

A rapidly growing population in a context of land and water scarcity, and climate change has driven an increase in healthy, nutritious, and affordable food demand while maintaining the current cropping area. Digital agriculture (DA) can contribute solutions to meet the demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. This article presents the results from a systematic review... G. Balboa, L. Puntel, R. Melchiori, R. Ortega, G. Tiscornia, E. Bolfe, A. Roel, F. Scaramuzza, S. Best, A. Berger, D. Hansel, D. Palacios

22. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in Argentina

The lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito

23. Making Irrigator Pro an Adaptive Irrigation Decision Support System

Irrigator Pro is a public domain irrigation scheduling model developed by the USDA-ARS National Peanut Research Laboratory. The latest version of the model uses either matric potential sensors to estimate the plant’s available soil water or manual data input. In this project, a new algorithm is developed, which will provide growers and consultants with much more flexibility in how they can feed data to the model. The new version will also run with Volumetric Water Content sensors, giving... I. Gallios, G. Vellidis, C. Butts

24. Yield Analysis in Sugarcane Harvesters Using Design of Experiments (DoE) Methodology

The sugarcane crop is highlighted in national agribusiness, Brazil is the world’s largest producer of the plant, and the prospection of specialists is of strong growth for the next years. However, in order to increase productivity, technological interventions through of precision agriculture must be implemented. Among them, the management of inputs guided by yield spatial variability for otmizing production and income. This project approaches the implementation of the methodology of analysis... M.L. Da silva, J. . Alves de lima, A. Balbinot, J.P. Molin

25. Assessing Crop Yield and Profitability with Site-specific Seed Rate Management in Corn and Soybean Cropping Systems

Integrating the information about soil and topographic properties for variable rate seeding is a prerequisite for improved crop production and thus profit. However, limited studies have explored the geospatial and machine learning approaches to understand factors influencing crop yield and profit under site-specific seed rate management. The objectives of this study were to: a) observe the effect of variable seeding rate based on soil and topographic properties on soybean and corn grain yield,... J. Neupane, N. Joshi, J.P. Fulton, S. Khanal, A. B k, B. Bhattarai

26. Evaluation of the Effect of Different Herbicide Treatments by Using UAV in Maise (Zea mays L.) Cultivation – First Experiences in a Long-term Experiment at Széchenyi István University, Hungary

As part of the Green Deal, the European Union has set a goal to reduce the use of chemical pesticides by 50 percent until 2030. To achieve this goal, in addition to reducing the amount of pesticide used, attention must also be paid to monitoring the temporal and spatial effects of pesticides on weeds during the cultivation of various crops. Hence, Syngenta Ltd., collaborating with researchers, aimed to monitor the effect of five different types of herbicides by UAV in two tillage treatments (CN... I.M. Kulmany, B. Horváth, G. Kukorelli, S. Zsebő, D. Stencinger, Z. Borbás, R. Pecze, L. Bede, Z. Varga, A. Kósa, G. Pinke, Z.K. Hashim, G. Hegedűs, J.A. Abdinoor, G.S. Agampodi

27. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System Imagery

In the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-throughput... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff

28. Enabling Field-level Connectivity in Rural Digital Agriculture with Cloud-based LoRaWAN

The widespread adoption of next-generation digital agriculture technologies in rural areas faces a critical challenge in the form of inadequate field-level connectivity. Traditional approaches to connecting people fall short in providing cost-effective solutions for many remote agricultural locations, exacerbating the digital divide. Current cellular networks, including 5G with millimeter wave technology, are urban-centric and struggle to meet the evolving digital agricultural needs, presenting... Y. Zhang, J. Bailey, A. Balmos, F.A. Castiblanco rubio, J. Krogmeier, D. Buckmaster, D. Love, J. Zhang, M. Allen

29. Predicting the Spatial Distribution of Aflatoxin Hotspots in Peanut Fields Using DSSAT CSM-CROPGRO-PEANUT-AFLATOXIN

Aflatoxin contamination in peanuts (Arachis hypogaea L.) is a persistent concern due to its detrimental effects on both profitability and public health. Several plant stress-inducing factors, including high soil temperatures and low soil moisture, have been associated with aflatoxin contamination levels. Understanding the correlation between stress-inducing factors and contamination levels is essential for implementing effective management strategies. This study uses the DSSAT CSM-CROPGRO-Peanut-Aflatoxin... S. Maktabi, G. Vellidis, G. Hoogenboom, K. Boote, C. Pilcon, J. Fountain, M. Sysskind, S. Kukal

30. Utilizing Image-based Artificial Intelligence for Grading Bovine Oocytes

For years, proper oocyte selection has been carried out with the precision of a lab technician’s eyes. The classification of oocytes using image-based artificial intelligence is a new technology that IVF lab technicians, cattle genetics companies, and veterinarians can utilize. Via the aspiration of the follicles on a cow’s ovaries, oocytes are able to be collected. Once oocytes are obtained from the ovaries of a cow, they are sent to an IVF lab to be cleaned and evaluated by a lab... G. Koppelman, J.P. Fulton, S. Khanal, T. Berger-wolf

31. Asia and Oceania Regional Meeting

... S.K. Balasundram