Proceedings
Authors
| Filter results6 paper(s) found. |
|---|
1. Investigation Of Crop Varieties At Different Growth Stages Using Optical Sensor DataCotton, soybean and sorghum are economically important crops in Texas. Knowing the growing status of crops at different stages of growth is crucial to apply site-specific management and increase crop yield for farmers. Field experiments were initiated to measure cotton, soybean and sorghum plants growth status and spatial variability through the whole growing cycle. A ground-based active optical sensor, Greenseeker®, was used to collect the Normalized Difference Vegetation Index (NDVI) data... H. Zhang, Y. Lan, J. Westbrook, C. Suh, C. Hoffmann, R. Lacey |
2. Greenhouse Study to Identify Glyphosate-resistant Weeds Based on Canopy TemperatureDevelopment of herbicide-resistant crops has resulted in significant positive changes to agronomic practices, while repeated and intensive use of herbicides with the same mechanisms of action has caused the development of herbicide-resistant weeds. As of 2015, 35 weed species are reported to be resistant to glyphosate worldwide. A greenhouse study was conducted to identify characteristics which can be helpful in field mapping of glyphosate resistant weeds by using UAV imagery. The experiment included... A. Shirzadi, M. Maharlooei, O. Hassanijalilian, S. Bajwa, K. Howatt, S. Sivarajan, J. Nowatzki |
3. Modus: a Standard for Big DataModus Standard is a system of defined terminology, agreed metadata and file transfer format that has grown from a need to exchange, merge and trend agricultural testing data. The three presenters will discuss steps taken to develop the system, benefits to data exchange, current user base and additions being made to the standard. ... D. Nerpel, J.W. Ellsworth, A. Hunt |
4. Evaluation of the Potential for Precision Agriculture and Soil Conservation at Farm and Watershed Scale: A Case StudyPrecision agriculture and soil conservation have the potential to increase crop yield and economic return while reducing environmental impacts. Landform, spatial variability of soil processes, and temporal trends may affect crop N response and should be considered for precision agriculture. The objective of this research was to evaluate the viability of precision agriculture in improving N use efficiency and profitability at the farm and watershed level in western Canada. Two studies are described... M. Khakbazan, A. Moulin, J. Huang, P. Michiels, R. Xie |
5. Supporting and Analysing On-Farm Nitrogen Tramline Trials So Farmers, Industry, Agronomists and Scientists Can LearN TogetherNitrogen fertilizer decisions are considered important for the agronomic, economic and environmental performance of cereal crop production. Despite good recommendation systems large unpredicted variation exists in measured N requirements. There may be fields and farms that are consistently receiving too much or too little N fertilizer, therefore losing substantial profit from wasted fertilizer or lost yield. Precision farming technologies can enable farmers (& researchers) to test appropriate... D. Kindred, R. Sylvester-bradley, S. Clarke, S. Roques, D. Hatley, B. Marchant |
6. A Bayesian Network Approach to Wheat Yield Prediction Using Topographic, Soil and Historical DataBayesian Network (BN) is the most popular approach for modeling in the agricultural domain. Many successful applications have been reported for crop yield prediction, weed infestation, and crop diseases. BN uses probabilistic relationships between variables of interest and in combination with statistical techniques the data modeling has many advantages. The main advantages are that the relationships between variables can be learned using the model as well as the potential to deal with missing... M. Karampoiki, L. Todman, S. Mahmood, A. Murdoch, D. Paraforos, J. Hammond, E. Ranieri |