Proceedings

Find matching any: Reset
Bronson, K
Bakshi, A
Bhuiya, G
Bhattarai, A
Bruce, A.E
Boukhalfa, H
Bazakos, M
Buschermohle, M.J
Add filter to result:
Authors
Lebeau, F
Massinon, M
Maréchal, P
Boukhalfa, H
Bronson, K
Horneck, D.A
Gadler, D.J
Bruce, A.E
Turner, R.W
Spinelli, C.B
Brungardt, J.J
Hamm, P.B
Hunt, E
Banerjee, M
Dutta, S
Bhuiya, G
Malik, G
Maiti, D
Mulla, D
Zermas, D
Kaiser, D
Bazakos, M
Papanikolopoulos, N
Stanitsas, P
Morellas, V
Larson, J.A
Stefanini, M
Lambert, D.M
Yin, X
Boyer, C.N
Varco, J.J
Scharf , P.C
Tubaña, B.S
Dunn, D
Savoy, H.J
Buschermohle, M.J
Tyler, D.D
Bari, M.A
Bakshi, A
Witt, T
Caragea, D
Jagadish, K
Felderhoff, T
Pramanik, S
Choton, J
Jakhar, A
Bhattarai, A
Bastos, L
Scarpin, G
Topics
Precision Crop Protection
Sensor Application in Managing In-season Crop Variability
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Precision Nutrient Management
Unmanned Aerial Systems
Profitability, Sustainability and Adoption
Big Data, Data Mining and Deep Learning
In-Season Nitrogen Management
Type
Poster
Oral
Year
2012
2010
2014
2016
2024
Home » Authors » Results

Authors

Filter results8 paper(s) found.

1. Canopy Reflectance-based Nitrogen Management Strategies For Subsurface Drip Irrigated Cotton

Nitrogen (N) fertilizer management in subsurface drip irrigation (SDI) systems for cotton (Gossypium hirsutum L.) can be very efficient when N is fertigated on a near daily time step.  Determining the amounts and timing of the N fertigation, however are questions that weekly canopy reflectance measurements may answer.   The main objective of this 3-yr. study was to test two canopy reflectance strategies for adjusting urea ammonium nitrate (UAN) fertilizer in-season injections... K. Bronson

2. The Effect of Leaf Orientation on Spray Retention on Blackgrass

Spray application efficiency depends on the pesticide application method as well as target properties. A wide range of drop impact angles exists during the spray application process because of drop trajectory and the variability of the leaf orientation. As the effect of impact angle on retention is still poorly documented, laboratory studies were conducted... F. Lebeau, M. Massinon, P. Maréchal, H. Boukhalfa

3. Detection Of Nitrogen Deficiency In Potatoes Using Small Unmanned Aircraft Systems

  Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. A nitrogen rate experiment was established in 2013 with ‘Ranger Russet’ potatoes by applying four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized block design with 3 replicates. A Tetracam Hawkeye sUAS and Agricultural Digital Camera Lite sensor were used to collect imagery with near-infrared... D.A. Horneck, D.J. Gadler, A.E. Bruce, R.W. Turner, C.B. Spinelli, J.J. Brungardt, P.B. Hamm, E. Hunt

4. Precision Nutrient Management Through Use Of LCC And Nutrient Expert In Hybrid Maize Under Laterite Soil Of India

Nutrient management has played a crucial role in achieving self sufficiency in food grain production. Energy crisis resulted in high price index of chemical fertilizers. Coupled with their limited production, fertilizer cost, soil health, sustainability and pollution have gave rise to interest in precision nutrient management tools. Field experiment was conducted to study the effect of variety and nutrient management on the growth and productivity of maize under lateritic belt of West Bengal... M. Banerjee, S. Dutta, G. Bhuiya, G. Malik, D. Maiti

5. Early Detection of Nitrogen Deficiency in Corn Using High Resolution Remote Sensing and Computer Vision

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which offer... D. Mulla, D. Zermas, D. Kaiser, M. Bazakos, N. Papanikolopoulos, P. Stanitsas, V. Morellas

6. Net Returns and Production Use Efficiency for Optical Sensing and Variable Rate Nitrogen Technologies in Cotton Production

This research evaluated the profitability and N use efficiency of real time on-the-go optical sensing measurements (OPM) and variable-rate technologies (VRT) to manage spatial variability in cotton production in the Mississippi River Basin states of Louisiana, Mississippi, Missouri, and Tennessee. Two forms of OPM and VRT and the existing farmer practice (FP) were used to determine N fertilizer rates applied to cotton on farm fields in the four states. Changes in yields and N rates due to OPM... J.A. Larson, M. Stefanini, D.M. Lambert, X. Yin, C.N. Boyer, J.J. Varco, P.C. Scharf , B.S. Tubaña, D. Dunn, H.J. Savoy, M.J. Buschermohle, D.D. Tyler

7. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System Imagery

In the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-throughput... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff

8. Proximal, Drone, and Satellite Sensors for In-season Variable Nitrogen Rate Application in Corn: a Comparative Study of Fixed-rate and Sensor-based Approaches

Effective nitrogen (N) management is essential for optimizing corn yield and enhancing agricultural sustainability. Traditional N application methods, typically uniform split pre-plant and in-season applications, often neglect the spatial and temporal variability of N requirements across different fields and years, potentially leading to N overuse. With the rise of precision agriculture technologies, it is crucial to reassess these conventional practices. This study had two main objectives: first,... A. Jakhar, A. Bhattarai, L. Bastos, G. Scarpin