Proceedings

Find matching any: Reset
Adams, C
Kwon, H
Abdollahi, J.M
White, S.N
Hagymássy, Z
Maja, J.J
Karn, R
Gal, A
Kizer, E
Add filter to result:
Authors
Tumenjargal, E
Badarch, L
Ham, W
Kwon, H
Tumenjargal, E
Badarch, L
Ham, W
Kwon, H
Arzani, H.P
Azimi, M.S
Kaboli, S.D
Mirdavodi, H.M
Borhani, M.M
Abdollahi, J.M
Farahpour, M.D
Kizer, E
Upadhyaya, S.K
Rojo, F
Ozmen, S
Ko-Madden, C
Zhang, Q
Nándor, C
Rátonyi, T
Harsányi, E
Ragán, P
Hagymássy, Z
Nagy, J
Vántus, A
Adams, C
Coates, A
Hennessy, P.J
Esau, T.J
Schumann, A.W
Farooque, A.A
Zaman, Q.U
White, S.N
Karn, R
Gu, H
Adedeji, O
Guo, W
Adedeji, O.I
Ghimire, B.P
Gu, H
Karn, R
Lin, Z
Guo, W
Maja, J.J
Abenina, M
Cutulle, M
Melgar, J
Liu, H
Jha, G
Nazrul, F
Nocco, M
Pagé Fortin, M
Whitaker, B
Diaz, D
Gal, A
Schmidt, R
Dey, S
Karn, R
Adedeji, O
Ghimire, B.P
Abdalla, A
Sheng, V
Ritchie, G
Guo, W
Adedeji, O
Guo, W
Alwaseela, H
Ghimire, B
Wieber, E
Karn, R
Ghimire, B
Karn, R
Adedeji, O
Ritchie, G
Guo, W
Ghimire, B
Karn, R
Adedeji, O
Guo, W
Adedeji, O
Karn, R
Ghimire, B.P
Guo, W
Wieber, E.N
Topics
Engineering Technologies and Advances
Guidance, Robotics, Automation, and GPS Systems
Spatial Variability in Crop, Soil and Natural Resources
Proximal Sensing in Precision Agriculture
Precision Dairy and Livestock Management
Applications of Unmanned Aerial Systems
Big Data, Data Mining and Deep Learning
Applications of Unmanned Aerial Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Weather and Models for Precision Agriculture
Precision Agriculture and Global Food Security
Drainage Optimization and Variable Rate Irrigation
Decision Support Systems
Precision Agriculture for Sustainability and Environmental Protection
Type
Poster
Oral
Year
2012
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results16 paper(s) found.

1. Implementation of ECU For Agricultural Machines Based On IsoAgLib Open Source

In this paper work, we consider implementation of electronic control unit (ECU) for agricultural machineries. Software implementation is based on IsoAgLib library developed by OSB&IT Engineering Company. We modify IsoAgLib and upgrade it for our target system. The IsoAgLib is an object oriented C++ library that has the communication services and management systems according to the ISO 11783 standard. This library allows building ISOBUS compatible equipment without the protocols implementation... E. Tumenjargal, L. Badarch, W. Ham, H. Kwon

2. Design and Implementation of Virtual Terminal Based On ISO11783 Standard for Agricultural Tractors

The modern agricultural machinery most common use of the embedded electronic and remote sensing technology demands adoption of the Precision Agriculture (PA). One of the common devices is the Virtual Terminal (VT) for tractor. The VT’s functions and terminology are described in the ISO11783 standard. This work presents the control system design and implementation of the VT and some Electronic Control Units (ECU) for agricultural vehicles based on the ISO 11783 standard. The VT development... E. Tumenjargal, L. Badarch, W. Ham, H. Kwon

3. Application of RS, GPS & GIS in a National Monitoring System for Accurate Range Assessment

Sustainable use of rangelands requires information on vegetation cover and its changes through time, condition trend and the effect of climate as well as management practices. The main objective of this research was showing variation of vegetation parameters,... H.P. Arzani, M.S. Azimi, S.D. kaboli, H.M. mirdavodi, M.M. Borhani, J.M. Abdollahi, M.D. farahpour

4. Proximal Sensing of Leaf Temperature and Microclimatic Variables to Implement Precision Irrigation in Almond and Grape Crops

Irrigation decisions based on traditional soil moisture sensing often leads to uncertainty regarding the true amount of water available to the plant. Plant based sensing of water stress decreases this uncertainty. In specialty crops grown in California’s Central Valley, precision deficit irrigation based on plant water stress could be used to decrease water use and increase water use efficiency by supplying the necessary quantity of water only when it is needed by the plant. However, there... E. Kizer, S.K. Upadhyaya, F. Rojo, S. Ozmen, C. Ko-madden, Q. Zhang

5. The Spread of Precision Livestock Farming Technology at Dairy Farms in East Hungary

During the survey, 25 dairy farms were examined in East Hungary in Hajdú-Bihar (H-B) County between 2017 and 2018 by methodical observation and oral interviews with the farm managers, about the spread of Precision Livestock Farming (PLF) technologies. Among Holstein Friesian dairy farms in the County 60% were questioned, and the representativity was above 47 percent ins each size category. Nine precision farming equipment were examined on the farms: milking robot or robotic carousel milking... C. Nándor, T. Rátonyi, E. Harsányi, P. Ragán, Z. Hagymássy, J. Nagy, A. Vántus

6. Using UAV Imagery for Crop Analytics

UAV imagery was collected in April and July of 2017 over a grape vineyard in California’s San Joaquin Valley. Using spectral signatures, a landcover classification was performed to isolate table grapes from the background vegetation and soil. A novel vegetation index was developed based off the unique spectral characteristics of the yellowing effects of chlorosis within the table grape vines. Spatial statistics were run only on the pixels containing grape plants, and a relative vegetation... C. Adams, A. Coates

7. Meta Deep Learning Using Minimal Training Images for Weed Classification in Wild Blueberry

Deep learning convolutional neural networks (CNNs) have gained popularity in recent years for their ability to classify images with high levels of accuracy. In agriculture, they have been applied for disease identification, crop growth monitoring, animal behaviour tracking, and weed classification. Datasets traditionally consisting of thousands of images of each desired target are required to train CNNs. A recent survey of Nova Scotia wild blueberry (Vaccinium angustifolium Ait.) fields,... P.J. Hennessy, T.J. Esau, A.W. Schumann, A.A. Farooque, Q.U. Zaman, S.N. White

8. Evaluation of Unmanned Aerial Vehicle Images in Estimating Cotton Nitrogen Content

Estimating crop nitrogen content is a critical step for optimizing nitrogen fertilizer application. The objective of this study was to evaluate the application of UAV images in estimating cotton (Gossypium hirsutum L.) N content. This study was conducted in a dryland cotton field in Garza County, Texas, in 2020. The experiment was implemented as a randomized complete block design with three N rates of 0, 34, and 67 kg N ha-1. A RedEdge multispectral sensor was used to acquire... R. Karn, H. Gu, O. Adedeji, W. Guo

9. Estimation of Cotton Biomass Using Unmanned Aerial Systems and Satellite-based Remote Sensing

Satellite and unmanned aerial system (UAS) images are effective in monitoring crop growth at various spatial, temporal, and spectral scales. The objective of the study was to estimate cotton biomass at different growth stages using vegetation indices (VIs) derived from UAS and satellite images. This research was conducted in a cotton field in Hale County, Texas, in 2021. Data collected include 54 plant samples at different locations for three dates of the growing season. Multispectral images from... O.I. Adedeji, B.P. Ghimire, H. Gu, R. Karn, Z. Lin, W. Guo

10. Snap-shot Hyperspectral Camera for Potassium Prediction of Peach Trees Using Multivariate Analysis

Hyperspectral imaging (HSI) is an emerging technology being utilized in agriculture. This system could be used to monitor the overall health of plants or pest disease detection. As sensing technology advances, measuring nutrient levels and disease detection also progresses. This study aimed to predict the levels of potassium (K) content in peach leaves with the new snapshot hyperspectral camera. The study was conducted at the Clemson University Musser Fruit Research Farm (Seneca, SC, USA, 34.61... J.J. Maja, M. Abenina, M. Cutulle, J. Melgar, H. Liu

11. Prediction of Field-scale Evapotranspiration Using Process Based Modeling and Geostatistical Time-series Interpolation

Irrigation scheduling depends on the combination of evaporative demand from the atmosphere, spatial and temporal heterogeneity in soil properties and changes in crop canopy during a growing season. This on-farm trial is based on data collected in 72-acre processing tomato field in Central Valley of California. The Multiband Spectrometric Arable Mark 2 sensors at three different locations in the field. Multispectral and thermal imagery provided by Ceres Imaging were collected eight times during... G. Jha, F. Nazrul, M. Nocco, M. Pagé fortin, B. Whitaker, D. Diaz, A. Gal, R. Schmidt

12. Within Field Cotton Yield Prediction Using Temporal Satellite Imagery Combined with Deep Learning

Crop yield prediction at the field scale plays a pivotal role in enhancing agricultural management, a vital component in addressing global food security challenges. Regional or county-level data, while valuable for broader agricultural planning, often lacks the precision required by farmers for effective and timely field management. The primary obstacle in utilizing satellite imagery to forecast crop yields at the field level lies in its low temporal and spatial resolutions. This study aims to... R. Karn, O. Adedeji, B.P. Ghimire, A. Abdalla, V. Sheng, G. Ritchie, W. Guo

13. Assessing Precision Water Management in Cotton Using Unmanned Aerial Systems and Satellite Remote Sensing

The goal of this study was to improve agricultural sustainability and water use efficiency by allocating the right amount of water at the right place and time within the field. The objectives were to assess the effect of variable rate irrigation (VRI) on cotton growth and yield and evaluate the application of satellites and Unmanned aerial systems (UAS) in capturing the spatial and temporal patterns of cotton growth response to irrigation. Irrigation treatments with six replications of three different... O. Adedeji, W. Guo, H. Alwaseela, B. Ghimire, E. Wieber, R. Karn

14. Simulating Climate Change Impacts on Cotton Yield in the Texas High Plains

Crop yield prediction enables stakeholders to plan farming practices and marketing. Crop models can predict crop yield based on cropping system and practices, soil, and other environmental factors. These models are being used for decision support in agriculture in a variety of ways. Cultivar selection, water and nutrient input optimization, planting date selection, climate change analysis and yield prediction are some of the promising area of applications of the models in field level farm management.... B. Ghimire, R. Karn, O. Adedeji, G. Ritchie, W. Guo

15. Predicting Within-field Cotton Yield Variability Using DSSAT for Decision Support in Precision Agriculture

The quantification of spatial and temporal variability of cotton (Gossypium hirsutum L.)  yield provides critical information for optimizing resources, especially water, in the Southern High Plains (SHP), Texas, with a diminishing water supply. The within-field yield variation is mostly influenced by the properties of soil and their interaction with water and nutrients. The objective of this study was to predict within-field cotton yield variability using a crop growth model... B. Ghimire, R. Karn, O. Adedeji, W. Guo

16. Evaluating the Impact of Irrigation Rate, Timing, and Maturity-based Cotton Cultivars on Yield and Fiber Quality in West Texas

In West Texas, effective irrigation is crucial for sustainable cotton production given the water scarcity from the declining Ogallala aquifer and erratic rainfall patterns. A three-year study (2020-2022) investigated irrigation rate and timing effects on early to mid-season cotton maturity groups. Five treatments, including rainfed (W1 or LLL) and variations in irrigation rates at growth stages (P1 to P4), were applied. Evaluation involved six to seven cotton cultivars from four maturity groups,... O. Adedeji, R. Karn, B.P. Ghimire, W. Guo, E.N. Wieber