Proceedings
Authors
| Filter results9 paper(s) found. |
|---|
1. Using Multiplex® to Manage Nitrogen Variability in Champagne Vineyard... L. Marine, M. Manon, G. Claire, P. Laurent, F. Mostafa, C. Zoran, B. Naima, D. Sébastien, G. Olivier |
2. Prediction Of Cation Exchange Capacity Using Visible And Near Infrared SpectroscopyCation exchange capacity (CEC) of the soil is a measure of the soil ability to hold positively charged ions and is an important indicator of soil physicochemical characteristic. It is an important property for site specific management of soil nutrients in precision agriculture. The conventional analytical methods used for the determination of CEC are expensive, difficult and time consuming, because different cations must be extracted and determined. Visible and near infrared (vis-NIR) spectroscopy... Y. Ulusoy, Z. Tümsavas, A.M. Mouazen, Y. Tekin |
3. Allelopathic Effects of Sunflower (Helianthus Annuus) on Germination and Growth of Wild Barley (Hordeum Spontaneum)Sunflower [Helianthus annuus (L.) Koch.] contains watersoluble allelochemicals that inhibit the ermination and growth of other species. This characteristic could be used in weed management programmes. Greenhouse and laboratory experiments were conducted to determine the effects on wild barley (Hordeum spontaneum Koch.) germination and seedling growth of(i) preceding crops, (ii) fresh sunflower residue incorporation, and (iii) sunflower leaf, stem, flower and root water extract concentrations.... Z.Y. Ashrafi, H.R. Mashhadi, S. Sadeghi |
4. Rapid Identification of Mulberry Leaf Pests Based on Near Infrared Hyperspectral ImagingAs one of the most common mulberry pests, Diaphania pyloalis Walker (Lepidoptera: Pyralididae) has occurred and damaged in the main sericulture areas of China. Naked eye observation, the most dominating method identifying the damage of Diaphania pyloalis, is time-wasting and labor consuming. In order to improve the identification and diagnosis efficiency and avoid the massive outbreak of Diaphania pyloalis, near infrared (NIR) hyperspectral imaging technology combined with partial least discriminant... L. Yang, L. Huang, L. Meng, J. Wang, D. Wu, X. Fu, S. Li |
5. Opportunities for Precision Agriculture in SerbiaThe aim of this paper is to analyze the factors leading to low adoption rate of precision farming in Serbia and to describe steps being taken by BioSense institute to increase it. The majority of the arable land in Serbia is grown by small family owned and operated farms most of which are in the range of 2 to 5 ha making them highly unsustainable. Only 16% of the arable land is managed by agricultural companies and cooperatives. We believe that the adoption of advanced technologies with the currently... A.C. Tagarakis, F. Van evert, D. Milic, V. Crnojevic, V. Crnojevic-bengin, C. Kempenaar, N. Ljubicic |
6. Machine Monitoring As a Smartfarming Concept ToolCurrent development trends are associated with the digitization of production processes and the interconnection of individual information layers from multiple sources into common databases, contexts and functionalities. In order to automatic data collection of machine operating data, the farm tractors were equipped with monitoring units ITineris for continuous collection and transmission of information from tractors CAN Bus. All data sets are completed with GPS location data. Acreage... M. Kroulik, V. Brant, P. Zabransky, J. Chyba, V. Krcek, M. Skerikova |
7. Management Zone-specific N Mineralization Rate Estimation in Unamended SoilSince nitrogen (N) mineralization from soil organic matter is governed by basic soil properties (soil organic matter content, pH, soil texture, …) that are known to exhibit strong in-field spatial variability, N mineralization is also expected to exhibit significant spatial variability at field scale. An ideal and efficient N recommendation for precision fertilization should therefore account for potential soil mineralizable N considering this spatial variability. Therefore, this study... F.Y. Ruma, M.A. Munnaf, S. De neve, A.M. Mouazen |
8. Multi-sensor Remote Sensing: an AI-driven Framework for Predicting Sugarcane FeedstockPredicting saccharine and bioenergy feedstocks in sugarcane enables stakeholders to determine the precise time and location for harvesting a better product in the field. Consequently, it can streamline workflows while enhancing the cost-effectiveness of full-scale production. On one hand, Brix, Purity, and total reducing sugars (TRS) can provide meaningful and reliable indicators of high-quality raw materials for industrial food and fuel processing. On the other hand, Cellulose, Hemicellulose,... M. Barbosa, D. Duron, F. Rontani, G. Bortolon, B. Moreira, L. Oliveira, T. Setiyono, L. Shiratsuchi, R.P. Silva, K.H. Holland |
9. Sparse Coding for Classification Via a Locality Regularizer: with Applications to AgricultureHigh-dimensional data is commonly encountered in various applications, including genomics, as well as image and video processing. Analyzing, computing, and visualizing such data pose significant challenges. Feature extraction methods become crucial in addressing these challenges by obtaining compressed representations that are suitable for analysis and downstream tasks. One effective technique along these lines is sparse coding, which involves representing data as a sparse linear combination of... A. Tasissa, L. Li, J.M. Murphy |