Proceedings

Find matching any: Reset
Huender, L
Murdoch, A.J
Wilson, J.A
Maja, J
Mzuku, M
Morales, G
Hoffmann, W.C
Add filter to result:
Authors
Mzuku, M
Khosla, R
Reich, R
http://icons.paqinteractive.com/16x16/ac, G
Smith, F
MacDonald, L
Murdoch, A.J
Mahmood, S.A
Hama Rash, S
Murdoch, A.J
Ferreyra, R
Applegate, D.B
Berger, A.W
Berne, D.T
Craker, B.E
Daggett, D.G
Gowler, A
Bullock, R.J
Haringx, S.C
Hillyer, C
Howatt, T
Nef, B.K
Rhea, S.T
Russo, J.M
Nieman, S.T
Sanders, P
Wilson, J.A
Wilson, J.W
Tevis, J.W
Stelford, M.W
Shearouse, T.W
Schultz, E.D
Reddy, L
Lan, Y
Huang, Y
Martin, D.E
Hoffmann, W.C
Fritz, B.K
López, J.D
Danford, D.D
Nelson, K.J
Rhea, S.T
Stelford, M.W
Ferreyra, R
Wilson, J.A
Craker, B.E
Peña, J
Melgar, J
de Castro, A
Maja, J
Nascimento-Silva, K
Morales, G
Sheppard, J.W
Peerlinck, A
Hegedus, P
Maxwell, B
Ferreyra, R
Lehmann, J
Wilson, J.A
Huender, L
Everett, M
Topics
Spatial Variability in Crop, Soil and Natural Resources
Spatial Variability in Crop, Soil and Natural Resources
Spatial Variability in Crop, Soil and Natural Resources
Standards & Data Stewardship
Remote Sensing Application / Sensor Technology
Big Data, Data Mining and Deep Learning
Applications of Unmanned Aerial Systems
Big Data, Data Mining and Deep Learning
Data Analytics for Production Ag
Weather and Models for Precision Agriculture
Type
Poster
Oral
Year
2010
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results10 paper(s) found.

1. Spatial Variability Of Measured Soil Properties Across Site- Specific Management Zones

The spatial variation of productivity across farm fields can be classified by delineating site-specific management zones. Since productivity is influenced by soil characteristics, the spatial pattern of productivity could be caused by a corresponding variation in certain soil properties. Determining the source of variation in productivity can help achieve more effective site-specific management, the objectives of this study were (i) to characterize the spatial variability of soil physical properties... M. Mzuku, R. Khosla, R. Reich, G. Http://icons.paqinteractive.com/16x16/ac, F. Smith, L. Macdonald

2. Toward More Precise Sugar Beet Management Based On Geostatistical Analysis Of Spatial Variabilty Within Fields

Abstract: Sugar beet (Beta vulgaris L.) yields in England are predicted to increase in the future, due to the advances in plant breeding and agronomic progress, but the intra-field variations in yield due to the variability in soil properties is considerable. This paper explores the within-field spatial variation in environmental variables and crop development during the growing season and their link to spatial variation in sugar beet yield.... A.J. Murdoch, S.A. Mahmood

3. Consequences of Spatial Variability in the Field on the Uniformity of Seed Quality in Barley Seed Crops

Spatial variation is known to affect cereal growth and yield but consequences for seed quality are less well-known. Intra-field spatial variation occurs in soil and environmental variables and these are expected to affect the crop. The objective of this paper was to identify the spatial variation in barley seed quality and to investigate its association with environmental factors and the spatial scale over which this correlation occurs. Two uniformly-managed, commercial fields of winter... S. Hama rash, A.J. Murdoch

4. Toward Geopolitical-Context-Enabled Interoperability in Precision Agriculture: AgGateway's SPADE, PAIL, WAVE, CART and ADAPT

AgGateway is a nonprofit consortium of 240+ businesses working to promote, enable and expand eAgriculture. It provides a non-competitive collaborative environment, transparent funding and governance models, and anti-trust and intellectual property policies that guide and protect members’ contributions and implementations. AgGateway primarily focuses on implementing existing standards and collaborating with other organizations to extend them when necessary. In 2010 AgGateway identified... R. Ferreyra, D.B. Applegate, A.W. Berger, D.T. Berne, B.E. Craker, D.G. Daggett, A. Gowler, R.J. Bullock, S.C. Haringx, C. Hillyer, T. Howatt, B.K. Nef, S.T. Rhea, J.M. Russo, S.T. Nieman, P. Sanders, J.A. Wilson, J.W. Wilson, J.W. Tevis, M.W. Stelford, T.W. Shearouse, E.D. Schultz, L. Reddy

5. Development of an Airborne Remote Sensing System for Aerial Applicators

An airborne remote sensing system was developed and tested for recording aerial images of field crops, which were analyzed for variations of crop health or pest infestation. The multicomponent system consists of a multi-spectral camera system, a camera control system, and a radiometer for normalizing images. To overcome the difficulties currently associated with correlating imagery data with what is actually occurring on the ground (a process known as ground truthing); a hyperspectral reflectance... Y. Lan, Y. Huang, D.E. Martin, W.C. Hoffmann, B.K. Fritz, J.D. López

6. ADAPT: A Rosetta Stone for Agricultural Data

Modern farming requires increasing amounts of data exchange among hardware and software systems. Precision agriculture technologies were meant to enable growers to have information at their fingertips to keep accurate farm records (and calculate production costs), improve decision-making and promote effi­cien­cies in crop management, enable greater traceability, and so forth. The attainment of these goals has been limited by the plethora of proprietary, incompatible data formats among... D.D. Danford, K.J. Nelson, S.T. Rhea, M.W. Stelford, R. Ferreyra, J.A. Wilson, B.E. Craker

7. UAV-based Hyperspectral Monitoring of Peach Trees As Affected by Silicon Applications and Water Stress Status

Previous research has shown that the application of reduced doses of Silicon (Si) improves crop tolerance to water stress, which is common in commercial young peach trees because irrigation is not usually applied during their first two years. In this study, aerial images were used to monitor the impact of different Si and water treatments on the hyperspectral response of peach trees. An experiment with 60 young (under 1 year old) peach trees located at the Musser Fruit Research Center (Seneca,... J. Peña, J. Melgar, A. De castro, J. Maja, K. Nascimento-silva

8. Generation of Site-specific Nitrogen Response Curves for Winter Wheat Using Deep Learning

Nitrogen response (N-response) curves are tools used to support farm management decisions. Conventionally, the N-response curve is modeled as an exponential function that aims to identify an important threshold for a given field: the economic optimum point. This is useful to determine the nitrogen rate beyond which there is no actual profit for the farmers. In this work, we show that N-response curves are not only field-specific but also site-specific and, as such, economic optimum points should... G. Morales, J.W. Sheppard, A. Peerlinck, P. Hegedus, B. Maxwell

9. Standards for Data-driven Agrifood Systems, One Year After the ISO Strategic Advisory Group for Smart Farming

The lack of data interoperability is a major obstacle for the data-driven, principled multi-objective decision-making required for modern agrifood systems to help meet the UN Sustainable Development Goals. Aware of this, the International Organization for Standardization (ISO) chartered a Strategic Advisory Group for Smart Farming (SAG-SF) to survey the existing standardization landscape of the domain within ISO, to identify gaps where additional standardization is needed, and to provide a strategic... R. Ferreyra, J. Lehmann, J.A. Wilson

10. Dimensionality Reduction and Similarity Metrics for Predicting Crop Yields in Sparse Data Microclimates

This study explores and develops new methodologies for predicting agricultural outcomes, such as crop yields, in microclimates characterized by sparse meteorological data. Specifically, it focuses on reducing the dimensionality in time series data as a preprocessing step to generate simpler and more explainable forecast models. Dimensionality reduction helps in managing large data sets by simplifying the information into more manageable forms without significant loss of information. We explore... L. Huender, M. Everett