Proceedings
Authors
| Filter results10 paper(s) found. |
|---|
1. Revising Nitrogen Recommendations For Wheat In Response To The Need For Support Of Variable-rate Nitrogen ApplicationSampling studies in North Dakota conducted from 1994 to 2003 showed that variable-rate N application could be practically directed with zone soil sampling. Results from variable-rate N studies using zone soil sampling were often less than rewarding due in part to the use of a whole-field predicted yield-based formula for developing the N recommendation in each zone. Nitrogen rate studies on spring wheat and durum were established in 2005 through 2009 to reexamine N recommendations. The results... D. Franzen, G. Endres, R. Ashley, J. Staricka, J. Lukach, K. Mckay |
2. Development of Micro-tractor-based Measurement Device of Soil Organic Matter Using On-the-go Visual-near Infrared Spectroscopy in Paddy Fields of South ChinaSoil organic matter (SOM) is an essential soil property for assessing the fertility of paddy soils in South China. In this study, a set of micro-tractor-based on-the-go device was developed and integrated to measure in-situ soil visible and near infrared (VIS–NIR) spectroscopy and estimate SOM content. This micro-tractor-based on-the-go device is composed of a micro-tractor with toothed-caterpillar band, a USB2000+ VIS–NIR spectroscopy detector, a self-customized steel plow and a self-customized... Z. Lianqing, S. Zhou, C. Songchao, Y. Yafei |
3. Soil Moisture, Organic Matter and Potassium Influences on Eca MeasurementSpatial variability of soil physical and chemical properties is a fundamental element of site-specific soil and crop management. Since its early implementation in agriculture as a method of measuring soil salinity, the acceptance of Apparent Electrical Conductivity (ECa) in agriculture has been popular as a method of determining the spatial variability of soil physical and chemical properties that influence the ECa estimates. It was the objective of this study to examine the spatial-temporal stability... R.R. Struthers, C.J. Johannsen, D.K. Morris |
4. Predicted Nitrate-N Loads for Fall, Spring, and VRN Fertilizer Application in Southern MinnesotaNitrate-N from agricultural fields is a source of pollution to fresh and marine waters via subsurface tile drainage. Sensor-based technologies that allow for in-season monitoring of crop nitrogen requirements may represent a way to reduce nitrate-N loadings to surface waters by allowing for fertilizer application on a more precise spatial and temporal resolution. However, little research has been done to determine its effectiveness in reducing nitrate-N losses. In this study,... G.L. Wilson, D.J. Mulla, J. Galzki, A. Laacouri, J. Vetsch |
5. Efficiency of Microbial Synthesis and the Flow of Nitrogen Compounds in Sheep Receiving Crambe Meal (Crambe Abyssinica Hochst) Replacing the Concentrade Crude ProteinThe objective of this study was to evaluate the effect of increasing levels (0, 25, 50, 75%) of crude protein substitution of the concentrate by crude protein of crambe meal on microbial protein synthesis and the flow of microbial nitrogen compounds in sheep. Four rumen fistulated sheep (18 months and initial average body weight of 50 kg) were distributed in a 4 x 4 Latin square design. Diets were balanced to meet the requirements for minimum gains, containing approximately 14% crude protein and... K.K. De azevedo, D.M. Figueiredo, G.M. Dallago, J.A. Vieira, R.R. Silveira, L.D. Da silva, R.A. Santos, L.N. Rennó, G.B. Pacheco |
6. How Digital is Agriculture in South America? Adoption and LimitationsA rapidly growing population in a context of land and water scarcity, and climate change has driven an increase in healthy, nutritious, and affordable food demand while maintaining the current cropping area. Digital agriculture (DA) can contribute solutions to meet the demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. This article presents the results from a systematic review... G. Balboa, L. Puntel, R. Melchiori, R. Ortega, G. Tiscornia, E. Bolfe, A. Roel, F. Scaramuzza, S. Best, A. Berger, D. Hansel, D. Palacios |
7. Use of Remotely Measured Potato Canopy Characteristics As Indirect Yield EstimatorsPrediction of potato yield before harvest is important for making agronomic and marketing decisions. Active optical sensors (AOS) are rarely used together with other hand-held instruments for monitoring potato growth, including yield prediction. The aim of the research was to determine the relationship between manually and remotely measured potato crop characteristics throughout the growing season and yield in commercial potato fields. Objective was also to identify crop characteristics that most... S.M. Samborski, J. Szatylowicz, T. Gnatowski, R. Leszczyńska, M. Thornton, O. Walsh |
8. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in ArgentinaThe lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito |
9. Within Field Cotton Yield Prediction Using Temporal Satellite Imagery Combined with Deep LearningCrop yield prediction at the field scale plays a pivotal role in enhancing agricultural management, a vital component in addressing global food security challenges. Regional or county-level data, while valuable for broader agricultural planning, often lacks the precision required by farmers for effective and timely field management. The primary obstacle in utilizing satellite imagery to forecast crop yields at the field level lies in its low temporal and spatial resolutions. This study aims to... R. Karn, O. Adedeji, B.P. Ghimire, A. Abdalla, V. Sheng, G. Ritchie, W. Guo |
10. Simulating Climate Change Impacts on Cotton Yield in the Texas High PlainsCrop yield prediction enables stakeholders to plan farming practices and marketing. Crop models can predict crop yield based on cropping system and practices, soil, and other environmental factors. These models are being used for decision support in agriculture in a variety of ways. Cultivar selection, water and nutrient input optimization, planting date selection, climate change analysis and yield prediction are some of the promising area of applications of the models in field level farm management.... B. Ghimire, R. Karn, O. Adedeji, G. Ritchie, W. Guo |