Proceedings

Find matching any: Reset
Upadhyaya, S
Paraforos, D
Turner, R.W
Van Couwenberghe, R
Add filter to result:
Authors
Rojo, F
Roach, J
Coates, R
Upadhyaya, S
Delwiche, M
Han, C
Dhillon, R
Horneck, D.A
Gadler, D.J
Bruce, A.E
Turner, R.W
Spinelli, C.B
Brungardt, J.J
Hamm, P.B
Hunt, E
Dhillon, R
Upadhyaya, S
Roach, J
Crawford, K
Lampinen, B
Metcalf, S
Rojo, F
Pradalier, C
Richard, A
Perez, V
Van Couwenberghe, R
Benbihi, A
Durand, P
Drechsler, K
Kisekka, I
Upadhyaya, S
Tsoulias, N
Paraforos, D
Brandes, N
Fountas, S
Zude-Sasse, M
Topics
Proximal Sensing in Precision Agriculture
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Sensor Application in Managing In-season CropVariability
Geospatial Data
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision Horticulture
Type
Oral
Year
2014
2018
Home » Authors » Results

Authors

Filter results6 paper(s) found.

1. Development And Evaluation Of A Leaf Monitoring System For Continuous Measurement Of Plant Water Status In Almond And Walnut Crops

Abstract: Leaf temperature measurements using handheld infrared thermometers have been used to predict plant water stress by calculating crop water stress index (CWSI). However, for CWSI calculations it is recommended to measure canopy temperature of trees under saturated, stressed and current conditions simultaneously, which is not very practical while using handheld units. An inexpensive, easy to use sensing system was developed to predict plant water status for tree crops by measuring... F. Rojo, J. Roach, R. Coates, S. Upadhyaya, M. Delwiche, C. Han, R. Dhillon

2. Detection Of Nitrogen Deficiency In Potatoes Using Small Unmanned Aircraft Systems

  Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. A nitrogen rate experiment was established in 2013 with ‘Ranger Russet’ potatoes by applying four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized block design with 3 replicates. A Tetracam Hawkeye sUAS and Agricultural Digital Camera Lite sensor were used to collect imagery with near-infrared... D.A. Horneck, D.J. Gadler, A.E. Bruce, R.W. Turner, C.B. Spinelli, J.J. Brungardt, P.B. Hamm, E. Hunt

3. Modeling Canopy Light Interception For Estimating Yield In Almond And Walnut Trees

A knowledge of spatio-temporal variability in potential yield is essential for site-specific nutrient management in crop production. The objectives of this project were to develop a model for photosynthetically active radiation (PAR) intercepted by almond and walnut trees based on data obtained from respective tree(s) and estimate potential crop yield in individual trees or in blocks of five trees. This project uses proximally sensed PAR interception data measured using a lightbar... R. Dhillon, S. Upadhyaya, J. Roach, K. Crawford, B. lampinen, S. Metcalf, F. Rojo

4. Automated Segmentation and Classification of Land Use from Overhead Imagery

Reliable land cover or habitat maps are an important component of any long-term landscape planning initiatives relying on current and past land use. Particularly in regions where sustainable management of natural resources is a goal, high spatial resolution habitat maps over large areas will give guidance in land-use management. We propose a computational approach to identify habitats based on the automated analysis of overhead imagery. Ultimately, this approach could be used to assist experts,... C. Pradalier, A. Richard, V. Perez, R. Van couwenberghe, A. Benbihi, P. Durand

5. A Comprehensive Stress Index for Evaluating Plant Water Status in Almond Trees

This study evaluated a comprehensive plant water stress index that integrates the canopy temperature and the environmental conditions that can assist in irrigation management. This index—Comprehensive Stress Index (CSI)—is based on the reformulation of the leaf energy balance equation. Specifically, CSI is the ratio of the temperature difference between a dry leaf (i.e. a leaf with a broken stem) and a live leaf (on the same tree) [i.e. Tdry-Tleaf] and the difference between the vapor... K. Drechsler, I. Kisekka, S. Upadhyaya

6. Calculating the Water Deficit of Apple Orchard by Means of Spatially Resolved Approach

In semi-humid climate, spatially resolved analysis of water deficit was carried out in apple orchard (Malus x domestica 'Pinova'). The meteorological data were recorded daily by a weather station. The apparent soil electrical conductivity (ECa) was measured at field capacity, and twenty soil samples in 30 cm were gathered for texture, bulk density, and gravimetric soil water content analyses. Furthermore, ten trees were defoliated in different ECa regions in order to estimate the leaf... N. Tsoulias, D. Paraforos, N. Brandes, S. Fountas, M. Zude-sasse