Proceedings
Authors
| Filter results13 paper(s) found. |
|---|
1. The Central China Agricultural High-Tech Industry Development ZoneThis is a presentation on precision ag opportunities in China. ... E. You fu |
2. Integrated Approach to Site-specific Soil Fertility ManagementIn precision agriculture the lack of affordable methods for mapping relevant soil attributes is a fundamental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor |
3. A Comparative Study of Field-Wide Estimation of Soil Moisture Using Compressive SensingIn precision agriculture, monitoring of soil moisture plays an essential role in correct decision making. In practice, regular mesh installation, or large random deployment of moisture sensors over a large field is not possible due to cost and maintenance prohibitions. Consequently, direct measurement of moisture is possible at only a few points in the field. A value for the moisture may then be estimated for the remaining areas using a variety of algorithms. It is shown that although... H. Pourshamsaei, A. Nobakhti |
4. Optimal Sensor Placement for Field-Wide Estimation of Soil MoistureSoil moisture is one of the most important parameters in precision agriculture. While techniques such as remote sensing seems appropriate for moisture monitoring over large areas, they generally do not offer sufficiently fine resolution for precision work, and there are time restrictions on when the data is available. Moreover, while it is possible to get high resolution-on demand data, but the costs are often prohibitive for most developing countries. Direct ground level measurement... H. Pourshamsaei, A. Nobakhti |
5. Reverse Modelling of Yield-Influencing Soil Variables in Case of Few Soil DataOur hypothesis was that simple models can be applied to predict yield by using only those yield data which spatially coincide with the soil data and the remaining yield data and the models can be used to test different sampling and interpolation approaches commonly applied in precision agriculture and to better predict soil variables at not observed locations. Three strategies for composite sample collection were compared in our study. Point samples were taken 1.) along lines within homogenous... I. Sisák, A. Benő, K. Szabó, M. Kocsis, J. Abonyi |
6. Increasing Corn (Zea Mays L.) Profitability by Site-Specific Seed and Nutrient Management in Igmand-Kisber Basin, HungaryVariable Rate Technology (VRT) in seeding and nutrient management has been developed in order to apply crop inputs variably. Farm equipment is widely available to manage in-field variability in Hungary, however, defining management zones, seed rates and amounts of nutrients is still a challenge. An increasing number of growers in Hungary have started adopting precision agriculture technology; however, data on profitability concerning site-specific seeding and nitrogen management is not widely... G. Milics, S. Szabó, K. Bűdi, A. Takács, V. Láng, S. Zsebo |
7. Rape Plant NDVI Spatial Distribution Model Based on 3D ReconstructionPlants’ morphology changes in their growing process. The 3D reconstruction of plant is of great significance for studying the impacts of plant morphology on biomass estimation, illness and insect infestation, genetic expression, etc. At present, the 3D point cloud reconstructed through 3D reconstruction mainly includes the morphology, color and other features of the plant, but cannot reflect the change in spatial 3D distribution of organic matters caused by the nutritional status (e.g. chlorophyll... Y. Chen, Y. He |
8. Application of a Systems Model to a Spatially Complex Irrigated Agricultural System: A Case StudyAlthough New Zealand is water-rich, many of the intensively farmed lowland areas suffer frequent summer droughts. Irrigation schemes have been developed to move water from rivers and aquifers to support agricultural production. There is therefore a need to develop tools and recommendations that consider both water dynamics and outcomes in these irrigated cropping systems. A spatial framework for an existing systems model (APSIM Next Generation) was developed that could capture the variability... J. Sharp, C. Hedley |
9. Predicting Below and Above Ground Peanut Biomass and Maturity Using Multi-target RegressionPeanut growth and maturity prediction can help farmers and breeding programs improving crop management. Remote sensing images collected by satellites and drones make possible and accurate crop monitoring. Today, empirical relations between crop biomass and spectral reflectance could be used for prediction of single variables such as aboveground crop biomass, pod weight (PW), or peanut maturity. Robust algorithms such as multioutput regression (MTR) implemented through multioutput random forest... M.F. Oliveira, F.M. Carneiro, M. Thurmond, M.D. Del val, L.P. Oliveira, B. Ortiz, A. Sanz-saez, D. Tedesco |
10. Coupling Machine Learning Algorithms and GIS for Crop Yield Predictions Based on Remote Sensing Imagery and Topographic IndicesIn-season yield prediction can support crop management decisions helping farmers achieve their yield goals. The use of remote sensing to predict yield it is an alternative for non-destructive yield assessment but coupling auxiliary data such as topography features could help increase the accuracy of yield estimation. Predictive algorithms that can effectively identify, process and predict yield at field scale base on remote sensing and topography still needed. Machine learning could be an alternative... M.F. Oliveira, G.T. Morata, B. Ortiz, R.P. Silva, A. Jimenez |
11. Multi-sensor Remote Sensing: an AI-driven Framework for Predicting Sugarcane FeedstockPredicting saccharine and bioenergy feedstocks in sugarcane enables stakeholders to determine the precise time and location for harvesting a better product in the field. Consequently, it can streamline workflows while enhancing the cost-effectiveness of full-scale production. On one hand, Brix, Purity, and total reducing sugars (TRS) can provide meaningful and reliable indicators of high-quality raw materials for industrial food and fuel processing. On the other hand, Cellulose, Hemicellulose,... M. Barbosa, D. Duron, F. Rontani, G. Bortolon, B. Moreira, L. Oliveira, T. Setiyono, L. Shiratsuchi, R.P. Silva, K.H. Holland |
12. Use of Crop and Drought Spectral Indices to Support Harvest Decisions of Peanut Fields in AlabamaHarvest efficiency expressed in quantity and quality of peanut fields could increase if farmers are provided with tools to support harvest decisions. Peanut farmers still rely on a visual and empiric method to assess the right time of peanut maturity but this method does not account for within-field variability of crop growth and maturity. The integration of spectral vegetation indices to assess drought, soil moisture, and crop growth to predict peanut maturity can help farmers strengthen decisions... M.F. Oliveira, B.V. Ortiz, E. Hanyabui, J.B. Costa souza, A. Sanz-saez, S. Luns hatum de almeida , C. Pilcon, G. Vellidis |
13. Implementation of Autonomous Material Re-filling Using Customized UAV for Autonomous Planting OperationsThis project introduces a groundbreaking use case for customized Unmanned Aerial Vehicles (UAVs) in precision agriculture, focused on achieving holistic autonomy in agricultural operations through multi-robot collaboration. Currently, commercially available drones for agriculture are restrictive in achieving collaborative autonomy with the growing number of unmanned ground robots, limiting their use to narrow and specific tasks. The advanced payload capacities of multi-rotor UAVs,... V. Muvva, H. Mwunguzi, S. Pitla, K. Joseph |