Proceedings
Authors
| Filter results7 paper(s) found. |
|---|
1. On-the-Go Nir Spectroscopy and Thermal Imaging for Assessing and Mapping Vineyard Water Status in Precision ViticultureNew proximal sensing technologies are desirable in viticulture to assess and map vineyard spatial variability. Towards this end, high-spatial resolution information can be obtained using novel, non-invasive sensors on-the-go. In order to improve yield, grape quality and water management, the vineyard water status should be determined. The goal of this work was to assess and map vineyard water status using two different proximal sensing technologies on-the-go: near infrared (NIR) reflectance spectroscopy... J. Tardaguila, M. Diago, S. Gutierrez, J. Fernandez-novales, E.A. Moreda |
2. Effectiveness of UAV-Based Remote Sensing Techniques in Determining Lettuce Nitrogen and Water StressesThis paper presents the results of the investigation on the effectiveness of UAV-based remote sensing data in determining lettuce nitrogen and water stresses. Multispectral images of the experimental lettuce plot at Cal Poly Pomona’s Spadra farm were collected from a UAV. Different rows of the lettuce plot were subject to different level of water and nitrogen applications. The UAV data were used in the determination of various vegetation indices. Proximal sensors used for ground-truthing... S. Bhandari, A. Raheja, M.R. Chaichi, R.L. Green, D. Do, M. Ansari, J.G. Wolf, A. Espinas, F.H. Pham, T.M. Sherman |
3. Development of a Machine Vision Yield Monitor for Shallot Onion HarvestersCrop yield estimation and mapping are important tools that can help growers efficiently use their available resources and have access to detailed representations of their farm. Technical advancements in computer vision have improved the detection, quality assessment and yield estimation processes for crops, including apples, citrus, mangoes, maize, figs and many other fruits. However, similar methods capable of exporting a detailed yield map for vegetable crops have not yet been fully developed.... A.A. Boatswain jacques, V.I. Adamchuk, G. Cloutier, J.J. Clark, C. Miller |
4. Increasing the Accuracy of UAV-Based Remote Sensing Data for Strawberry Nitrogen and Water Stress DetectionThis paper presents the methods to increase the accuracy of unmanned aerial vehicles (UAV)-based remote sensing data for the determination of plant nitrogen and water stresses with increased accuracy. As the demand for agricultural products is significantly increasing to keep up with the growing population, it is important to investigate methods to reduce the use of water and chemicals for water conservation, reduction in the production cost, and reduction in environmental impact. UAV-based remote... S. Bhandari, A. Raheja |
5. Incorporating Return on Investment for Profit-driven Management ZonesAdopting site-specific management practices such as profitability zones can help to stabilize long-term profit while also favoring the environment. Profitability maps are used to standardize data by converting variables into economic values ($/ha) for different cropping systems within a field. Thus, profitability maps can be used to define management zones from several years of data and show the regions within a field which are more profitable to invest in for production, or those that can be... A.A. Boatswain jacques, A.B. Diallo, A. Cambouris, E. Lord, E. Fallon |
6. Deep Learning for Predicting Yield Temporal Stability from Short Crop RotationsInvestigating the temporal stability of yield in management zones is crucial for both producers and researchers, as it helps in mitigating the adverse impacts of unpredictable disruptions and weather events. The diversification of cropping systems is an approach which leads to reduced variability in yield while improving overall field resilience. In this six-year study spanning from 2016 to 2021, we monitored 40 distinct fields owned by 10 producers situated in Quebec, Canada. These... E. Lord, A.A. Boatswain jacques, A.B. Diallo, M. Khakbazan, A. Cambouris |
7. Leveraging UAV-based Hyperspectral Data and Machine Learning Techniques for the Detection of Powderly Mildew in VineyardsThis paper presents the development and validation of machine learning models for the detection of powdery mildew in vineyards. The models are trained and validated using custom datasets obtained from unmanned aerial vehicles (UAVs) equipped with a hyperspectral sensor that can collect images in visible/near-infrared (VNIR) and shortwave infrared (SWIR) wavelengths. The dataset consists of the images of vineyards with marked regions for powdery mildew, meticulously annotated using LabelImg. ... S. Bhandari, M. Acosta, C. Cordova gonzalez, A. Raheja, A. Sherafat |