Proceedings
Authors
| Filter results5 paper(s) found. |
|---|
1. Soybean Canopy Response To Charcoal Rot In Arkansas: Observations Using Crop Circletm (ACS-470).Charcoal Rot caused by Macrophomina phaseolina is a problem to soybean production, especially in hot and dry areas of southern US. As an approach to develop a fast assessment method of this soil-borne disease, soybean canopy reflectance was recorded with an active optical sensor, the Crop CircleTM ACS-470 in 2009 from a microplot field in Fayetteville, Arkansas. The microplot experiment was designed as a completely randomized factorial experiment with four cultivars, two inoculum... S.S. Kulkarni, M. Doubledee, S.G. Bajwa, J.C. Rupe |
2. Corn Nitrogen Fertilizer Recommendation Models Based on Soil Hydrologic Groups Aid in Predicting Economically Optimal Nitrogen RatesNitrogen (N) fertilizer recommendations that match corn (Zea mays L.) N needs maximize grower profits and minimize water quality consequences. However, spatial and temporal variability makes determining future N requirements difficult. Studies have shown no single soil or weather measurement is consistently increases accuracy, especially when applied over a regional scale, in predicting economically optimal N rate (EONR). Basing site N response on soil hydrological group could help account for... G.M. Bean, N.R. Kitchen, J.J. Camberato, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.E. Sawyer, P.C. Scharf |
3. Improving Corn Nitrogen Rate Recommendations Through Tool FusionImproving corn (Zea maysL,) nitrogen (N) fertilizer rate recommendation tools can improve farmer’s profits and help mitigate N pollution. One way to improve N recommendation methods is to not rely on a single tool, but to employ two or more tools. Thiscould be thoughtof as “tool fusion”.The objective of this analysis was to improve N management by combining N recommendation tools used for guiding rates for an in-seasonN application. This evaluation was... C.J. Ransom, N.R. Kitchen, J.J. Camberato, P.R. Carter, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J. Shanahan, J.E. Sawyer |
4. Using Profitability Map to Make Precision Farming Decisions: A Case Study in MississippiRecent development in precision agriculture technologies have generated massive amount of geospatial data of farming, such as yield mapping, seeding rates, input applications, and so on. However, producers are still struggling to convert those precision data into farm management decisions to improve productivity and profitability of farming. Indeed, deriving accurate decisions at each site of the field requires complex and comprehensive modeling of crop yield responses to various... X. Li, K. Coble |
5. All for One and One for All: a Simulation Assessment of the Economic Value of Large-scale On-farm Experiment NetworkWhile on-farm experiments offer invaluable insights for precision management decisions, their scope is usually confined to the specific conditions of individual farms and years, which limits the derivation of more broad and reliable decisions. To address this limitation, aggregating data from numerous farms of various crop growth conditions into a comprehensive dataset appears promising. However, the quantifiable value of this experiment network remains elusive, despite the common agreement of... X. Li |