Proceedings

Find matching any: Reset
Behera, S
Brungardt, J.J
Fey, S
Filippi, P
Add filter to result:
Authors
Horneck, D.A
Gadler, D.J
Bruce, A.E
Turner, R.W
Spinelli, C.B
Brungardt, J.J
Hamm, P.B
Hunt, E
Kyveryga, P.M
Fey, S
Connor, J
Kiel, A
Muth, D
Filippi, P
Jones, E.J
Fajardo, M
Whelan, B.M
Bishop, T.F
Tilse, M.J
Filippi, P
Bishop, T
Filippi, P
Bishop, T
Al-Shammari, D
McPherson, T
Filippi, P
Bishop, T
Han, S
Behera, S
Pitla, S
Topics
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Profitability, Sustainability and Adoption
Big Data, Data Mining and Deep Learning
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Decision Support Systems
Big Data, Data Mining and Deep Learning
Robotics and Automation with Row and Horticultural Crops
Type
Oral
Year
2014
2016
2018
2024
Home » Authors » Results

Authors

Filter results7 paper(s) found.

1. Detection Of Nitrogen Deficiency In Potatoes Using Small Unmanned Aircraft Systems

  Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. A nitrogen rate experiment was established in 2013 with ‘Ranger Russet’ potatoes by applying four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized block design with 3 replicates. A Tetracam Hawkeye sUAS and Agricultural Digital Camera Lite sensor were used to collect imagery with near-infrared... D.A. Horneck, D.J. Gadler, A.E. Bruce, R.W. Turner, C.B. Spinelli, J.J. Brungardt, P.B. Hamm, E. Hunt

2. Within-field Profitability Assessment: Impact of Weather, Field Management and Soils

Profitability in crop production is largely driven by crop yield, production costs and commodity prices. The objective of this study was to quantify the often substantial yet somewhat illusive impact of weather, management, and soil spatial variability on within-field profitability in corn and soybean crop production using profitability indices for profit (net return) and return-on-investment (ROI) to produce estimates. We analyzed yield and cropping system data provided by 42 farmers within Central... P.M. Kyveryga, S. Fey, J. Connor, A. Kiel, D. Muth

3. Forecasting Crop Yield Using Multi-Layered, Whole-Farm Data Sets and Machine Learning

The ultimate goal of Precision Agriculture is to improve decision making in the business of farming. Many broadacre farmers now have a number of years of crop yield data for their fields which are often augmented with additional spatial data, such as apparent soil electrical conductivity (ECa), soil gamma radiometrics, terrain attributes and soil sample information. In addition there are now freely available public datasets, such as rainfall, digital soil maps and archives of satellite remote... P. Filippi, E.J. Jones, M. Fajardo, B.M. Whelan, T.F. Bishop

4. Predicting, Mapping, and Understanding the Drivers of Grain Protein Content Variability – Utilising John Deere’s New Harvestlab 3000 Grain Sensing System

Grain protein content (GPC) is a key determinant of the prices that grain growers receive, and the rising cost of production is shifting management focus towards optimising this to maximise return on investment. In 2023, John Deere released the HarvestLab 3000TM Grain Sensing system in Australia for real-time, on-the-go measurement of protein, starch, and oil values for wheat, barley, and canola. However, while the uptake of these sensors is increasing, GPC maps are not available for... M.J. Tilse, P. Filippi, T. Bishop

5. Are Pulses Really More Variable Than Cereals? a Country-wide Analysis of Within-field Variability

In Australia, pulses are underutilised by growers relative to cereal crops. There is significant global interest in growing pulses to provide more plant protein, and they also provide a string of agronomic and environmental benefits, such as their ability to fix nitrogen, and provide a pest and disease break for cereal crops. Many studies attribute this underutilisation to pulses exhibiting greater within-field yield variability than cereals. However, this has never been comprehensively examined... P. Filippi, T. Bishop, D. Al-shammari, T. Mcpherson

6. On Data-driven Crop Yield Modelling, Predicting, and Forecasting and the Common Flaws in Published Studies

There has been a recent surge in the number of studies that aim to model crop yield using data-driven approaches. This has largely come about due to the increasing amounts of remote sensing (e.g. satellite imagery) and precision agriculture data available (e.g. high-resolution crop yield monitor data), and abundance of machine learning modelling approaches. This is a particular problem in the field of Precision Agriculture, where many studies will take a crop yield map (or a small number), create... P. Filippi, T. Bishop, S. Han, I. Rund

7. Advancements in Agrivoltaics: Autonomous Robotic Mowing for Enhanced Management in Solar Farms

Agrivoltaics – the co-location of solar energy installations and agriculture beneath or between rows of photovoltaic panels – has gained prominence as a sustainable and efficient approach to land use. The US has over 2.8 GW in Agrivoltaics, integrating crop cultivation with solar energy. However, effective vegetation management is critical for solar panel efficiency. Flat, sunny agricultural land accommodates solar panels and crops efficiently. The challenge lies in managing grass... S. Behera, S. Pitla