Proceedings

Find matching any: Reset
Lopes, W.C
Laursen, M.S
Esau, K
Liang, X
Lie, D.M
Landivar, J
E. Flores, A
Laamrani, A
English, B.C
Lacey, R
Edge, B
Add filter to result:
Authors
Lie, D.M
shilai, Y.M
Thompson, N.M
Larson, J.A
English, B.C
Lambert, D.M
Roberts, R.K
Velandia, M
Wang, C
Lopes, W.C
Domingues, G
Sousa, R.V
Porto, A.J
Inamasu, R.Y
Pereira, R.R
Lan, Y
Zhang, H
Yang, C
Martin, D
Lacey, R
Huang, Y
Hoffmann, W.C
Moulton, P
Larson, J.A
Mooney, D.F
Roberts, R.K
English, B.C
Velandia, M
Mooney, D.F
Roberts, R.K
English, B.C
Larson, J.A
Lambert, D.M
Larkin, S.L
Marra, M.C
Rejesus, R
Martin, S.W
Paxton, K.W
Mishra, A
Wang, C
Segarra, E
Reeves, J.M
Harper, D.C
Lambert, D.M
English, B.C
Larson, J.A
Roberts, R.K
Velandia, M
Mooney, D.F
Larkin, S.L
Vellidis, G
Liakos, V
Porter, W
Liang, X
Tucker, M.A
Esau, K
Zaman, Q
Farooque, A
Schumann, A
Liakos, V
Porter, W
Liang, X
Tucker, M
McLendon, A
Perry, C
Vellidis, G
Dyrmann, M
Skovsen, S
Jørgensen, R.N
Laursen, M.S
Laamrani, A
Berg, A
March, M
McLaren, A
Martin, R
Christiansen, M.P
Laursen, M.S
Jørgensen, R.N
Skovsen, S
Gislum, R
Edge, B
Lacerda, L
Miao, Y
Sharma, V
E. Flores, A
Kechchour, A
Lu, J
Bhandari, M
Landivar, J
Ghansah, B
Zhao, L
Landivar, J
Pal, P
Topics
Precision Horticulture
Profitability, Sustainability and Adoption
Guidance, Robotics, Automation, and GPS Systems
Remote Sensing Applications in Precision Agriculture
Profitability, Sustainability, and Adoption
Precision Nutrient Management
Engineering Technologies and Advances
Decision Support Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Applications of Unmanned Aerial Systems
On Farm Experimentation with Site-Specific Technologies
Proximal and Remote Sensing of Soils and Crops (including Phenotyping)
Artificial Intelligence (AI) in Agriculture
Type
Poster
Oral
Year
2012
2010
2016
2018
2024
Home » Authors » Results

Authors

Filter results16 paper(s) found.

1. Multisensor Data Fusion Of Remotely Sensed Imagery For Crop Field Mapping

  A wide variety of remote sensing data from airborne hyperspectral and multispectral images is available for site-specific management in agricultural application and production. Aerial imaging system may offer less expensive and high spatial resolution imagery with Near Infra-Red, Red, Green and Blue spectral wavebands. Hyperspectral sensor provides hundreds of spectral bands. Multisensor data fusion provides an effective paradigm for remote sensing applications by synthesizing... Y. Lan, H. Zhang, C. Yang, D. Martin, R. Lacey, Y. Huang, W.C. Hoffmann, P. Moulton

2. A Computer Decision Aid For The Cotton Precision Agriculture Investment Decision

This article introduces the Cotton Precision Agriculture Investment Decision Aid (CPAIDA), a software decision tool for analyzing the precision agriculture investment decision. CPAIDA was developed to provide improved educational information about precision farming equipment ownership costs, and the required returns to pay for their investment. The partial budgeting and breakeven analysis framework is documented along with use of the decision aid. With care in specifying values, program users... J.A. Larson, D.F. Mooney, R.K. Roberts, B.C. English

3. Cotton Precision Farming Adoption In The Southern United States: Findings From A 2009 Survey

The objectives of this study were 1) to determine the status of precision farming technology adoption by cotton producers in 12 states and 2) to evaluate changes in cotton precision farming technology adoption between 2000 and 2008. A mail survey of cotton producers located in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas and Virginia was conducted in February and March of 2009 to establish the use of precision farming technologies... M. Velandia, D.F. Mooney, R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, S.L. Larkin, M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, C. Wang, E. Segarra, J.M. Reeves

4. Adoption And Perceived Usefulness Of Precision Soil Sampling Information In Cotton Production

  Soil testing assists farmers in identifying nutrient variability to optimize input placement and timing. Anecdotal evidence suggests that soil test information has a useful life of 3–4 years. However, perceived usefulness may depend on a variety of factors, including field variability, farmer experience and education, farm size, Extension, and factors indirectly related to farming. In 2009, a survey of cotton farmers in 12 Southeastern states collected information... D.C. Harper, D.M. Lambert, B.C. English, J.A. Larson, R.K. Roberts, M. Velandia, D.F. Mooney, S.L. Larkin

5. Research on Nutrition and Quality Detection Technology of Soil, Leaf and Fruit of Citrus Based on and Digital Image Spectroscopic Techniques

The diagnosis technique of real-time lossless crop nutrition is the foundation and conditions for the precise, effective fertilization, cultivation and management, and so on. Currently, the diagnosis of crop nutrition mainly relies on the routine chemical analysis of laboratory. Due to the complicated procedure, time-consuming,... D.M. Lie, Y.M. Shilai

6. The Adoption of Information Technologies and Subsequent Changes in Input Use in Cotton Production

The use of precision farming has become increasingly important in cotton production. It allows farmers to take advantage of knowledge about infield variability by applying expensive inputs at levels appropriate to crop needs. Essential to the success of the precision... N.M. Thompson, J.A. Larson, B.C. English, D.M. Lambert, R.K. Roberts, M. Velandia, C. Wang

7. Compatible ISOBUS Applications Using a Computational Tool for Support the Phases of the Precision Agriculture Cycle

... W.C. Lopes, G. Domingues, R.V. Sousa, A.J. Porto, R.Y. Inamasu, R.R. Pereira

8. A Dynamic Variable Rate Irrigation Control System

Currently variable rate irrigation (VRI) prescription maps used to apply water differentially to irrigation management zones (IMZs) are static.  They are developed once and used thereafter and thus do not respond to environmental variables which affect soil moisture conditions.  Our approach for creating dynamic prescription maps is to use soil moisture sensors to estimate the amount of irrigation water needed to return each IMZ to an ideal soil moisture condition.  The UGA Smart... G. Vellidis, V. Liakos, W. Porter, X. Liang, M.A. Tucker

9. Effective Use of a Debris Cleaning Brush for Mechanical Wild Blueberry Harvesting

Wild blueberries are an important horticultural crop native to northeastern North America. Management of wild blueberry fields has improved over the past decade causing increased plant density and leaf foliage. The majority of wild blueberry fields are picked mechanically using tractor mounted harvesters with 16 rotating rakes that gently comb through the plants. The extra foliage has made it more difficult for the cleaning brush to remove unwanted debris (leaf, stems, weeds, etc.) from the picker... K. Esau, Q. Zaman, A. Farooque, A. Schumann

10. Three Years of On-Farm Evaluation of Dynamic Variable Rate Irrigation: What Have We Learned?

This paper will present a dynamic Variable Rate Irrigation System developed by the University of Georgia. The system consists of the EZZone management zone delineation tool, the UGA Smart Sensor Array (UGA SSA) and an irrigation scheduling decision support tool. An experiment was conducted in 2015, 2016 and 2017 in two different peanut fields to evaluate the performance of using the UGA SSA to dynamically schedule Variable Rate Irrigation (VRI). For comparison reasons strips were designed within... V. Liakos, W. Porter, X. Liang, M. Tucker, A. Mclendon, C. Perry, G. Vellidis

11. Using a Fully Convolutional Neural Network for Detecting Locations of Weeds in Images from Cereal Fields

Information about the presence of weeds in fields is important to decide on a weed control strategy. This is especially crucial in precision weed management, where the position of each plant is essential for conducting mechanical weed control or patch spraying. For detecting weeds, this study proposes a fully convolutional neural network, which detects weeds in images and classifies each one as either a monocot or dicot. The network has been trained on over 13 000 weed annotations... M. Dyrmann, S. Skovsen, R.N. Jørgensen, M.S. Laursen

12. Use of UAV Acquired Imagery As a Precision Agriculture Method for Measuring Crop Residue in Southwestern Ontario, Canada

Residue management on agriculture land is a practice of great importance in southwestern Ontario, where soil management practices have an important effect on Great Lakes water quality. The ability of tillage or planting system to maintain soil residue cover is currently measured by using one or more of the common methods, line transect (e.g. knotted rope, Meter stick) and photographic (grid, script, and image analysis) methods. Each of these techniques has various advantages and disadvantages;... A. Laamrani, A. Berg, M. March, A. Mclaren, R. Martin

13. Ground Vehicle Mapping of Fields Using LiDAR to Enable Prediction of Crop Biomass

Mapping field environments into point clouds using a 3D LIDAR has the ability to become a new approach for online estimation of crop biomass in the field. The estimation of crop biomass in agriculture is expected to be closely correlated to canopy heights. The work presented in this paper contributes to the mapping and textual analysis of agricultural fields. Crop and environmental state information can be used to tailor treatments to the specific site. This paper presents the current results... M.P. Christiansen, M.S. Laursen, R.N. Jørgensen, S. Skovsen, R. Gislum

14. An Economic-Theory-Based Approach to Management Zone Delineation

In both the academic and popular literatures on precision agriculture technology, a management zoneis generally defined as an area in a field within which the optimal input application strategy is spatially uniform.  The characteristics commonly chosen to delineate management zones, both in the literature and in commercial practice, are yield and variables associated with yield.  But microeconomic theory makes clear that economically optimal input application strategies... B. Edge

15. Estimating Water and Nitrogen Deficiency in Corn Using a Multi-parameter Proximal Sensor

The Crop Circle Phenom (CCP) is an innovative integrated proximal sensor that can be potentially used to perform in-season diagnosis of nitrogen and water status. In addition to measuring spectral reflectance in several bands including the red, red edge, and near-infrared wavelengths, the CCP can also measure canopy and air temperatures and provides several parameters that can be associated with chlorophyll content, crop vigor, and water status. These capabilities differentiate the CCP from other... L. Lacerda, Y. Miao, V. Sharma, A. E. flores, A. Kechchour, J. Lu

16. Cotton Yield Estimation Using High-resolution Satellite Imagery Obtained from Planet SkySat

Satellite images have been used to monitor and estimate crop yield. Over the years, significant improvements on spatial resolution have been made where ortho images can be generated at 30-centimeter resolution. In this study, we wanted to explore the potential use of Planet SKYSAT satellite system for cotton yield predictions. This system provided imagery data at 50 centimeters resolution, and we collected data 14 times during the season. The data were collected from two different cotton... M. Bhandari