Proceedings
Authors
| Filter results27 paper(s) found. |
|---|
1. Site-specific Management For Biomass Feedstock Production: Development Of Remote Sensing Data Acquisition SystemsEfficient biomass feedstock production supply chain spans from site-specific management of crops on field to the gate of biorefinery. Remote sensing data acquisition systems have been introduced for site-specific management, which is a part of the engineering solutions for biomass feedstock production. A stand alone tower remote sensing platform was developed to monitor energy crops using multispectral imagery. The sensing system was capable of collecting RGB and CIR images during the crop growing... T. Ahamed, L. Tian, Y. Zhang, Y. Xiong, B. Zhao, Y. Jiang, K. Ting |
2. Evaluation of Photovoltaic Modules at Different Installation Angles and Times of the DaySeveral electricity-consuming components for cooling and heating, illumination, ventilation, and irrigation are used to maintain proper environments of protected crop cultivation facilities. Photovoltaic system is considered as one of the most promising alternative power source for protected cultivation. Effects of environment,... S. Chung, J. Kong, Y. Huh, K. Bae, S. Hur, D. Lee, Y. Chae |
3. Near-Real-Time Remote Sensing And Yield Monitoring Of Biomass CropsThe demand for bioenergy crops production has increased tremendously by the biofuel industry for substitution of traditional fuels due to the economic availability and environmental benefits. Pre-Harvest monitoring of biomass production is necessary to develop optimized instrumentation and data processing systems for crop growth, health and stress monitoring; and to develop algorithms for field operation scheduling. To cope with the problems of missing critical... Y. Zhao, L. Li, K.C. Ting, L.F. Tian, T. Ahamed |
4. Towards Data-intensive, More Sustainable Farming: Advances in Predicting Crop Growth and Use of Variable Rate Technology in Arable Crops in the NetherlandsPrecision farming (PF) will contribute to more sustainable agriculture and the global challenge of producing ‘More with less’. It is based on the farm management concept of observing, measuring and responding to inter- and intra-field variability in crops. Computers enabled the use of Farm Management Information Systems (FMIS) and farm and field specific Decision Support Systems (DSS) since mid-1980s. GIS and GNSS allowed since ca. 2000 geo-referencing of data and controlled traffic... C. Kempenaar, F. Van evert, T. Been, C. Kocks, K. Westerdijk, S. Nysten |
5. Agronomic Characteristics of Green Corn and Correlations with Productivity for the Establishment of Management Zones in Vale Do Ribeira, SP, BrazilIn Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, V.S. Akune, S.H. Benez, L.C. Citon, P.H. Nakazawa, A.J. Santana neto |
6. Integrated Approach to Site-specific Soil Fertility ManagementIn precision agriculture the lack of affordable methods for mapping relevant soil attributes is a fundamental problem. It restricts the development and application of advanced models and algorithms for decision making. The project “I4S - Integrated System for Site-Specific Soil Fertility Management” combines new sensing technologies with dynamic soil-crop models and decision support systems. Using sensors with different measurement principles improves the estimation of soil fertility... R. Gebbers, V. Dworak, B. Mahns, C. Weltzien, D. Büchele, I. Gornushkin, M. Mailwald, M. Ostermann, M. Rühlmann, T. Schmid, M. Maiwald, B. Sumpf, J. Rühlmann, M. Bourouah, H. Scheithauer, K. Heil, T. Heggemann, M. Leenen, S. Pätzold, G. Welp, T. Chudy, A. Mizgirev, P. Wagner, T. Beitz, M. Kumke, D. Riebe, C. Kersebaum, E. Wallor |
7. Spatial Variability and Correlations Between Soil Attributes and Productivity of Green Corn CropIn Brazil, the progressive development in the cultivation of the corn for consumption in the green stadium stands by the relevant socio-economic role that this related to multiple applications, the attractive market price and continuous demand for the product in nature. Therefore, this study was to analyze the correlations and spatial variability of the productivity of the culture of the green corn in winter, in alluvial soil of the type Cambisols eutrophic in the amount areas and Hydromorphic... W.J. Souza, S.H. Benez, P.H. Nakazawa, A.J. Santana neto, L.C. Citon, V.S. Akune |
8. Comparative Benefits of Drone Imagery for Nitrogen Status Determination in CornRemotely sensed vegetation data provide an effective means of measuring the spatial variability of nitrogen and therefore of managing applications by taking intrafield variations into account. Satellites, drones and sensors mounted on agricultural machinery are all technologies that can be used for this purpose. Although a drone (or unmanned aerial vehicle [UAV]) can produce very high-resolution images, the comparative advantages of this type of imagery have not been demonstrated. The goal of... N. Tremblay, K. Khun, P. Vigneault, M.Y. Bouroubi, F. Cavayas, C. Codjia |
9. Reverse Modelling of Yield-Influencing Soil Variables in Case of Few Soil DataOur hypothesis was that simple models can be applied to predict yield by using only those yield data which spatially coincide with the soil data and the remaining yield data and the models can be used to test different sampling and interpolation approaches commonly applied in precision agriculture and to better predict soil variables at not observed locations. Three strategies for composite sample collection were compared in our study. Point samples were taken 1.) along lines within homogenous... I. Sisák, A. Benő, K. Szabó, M. Kocsis, J. Abonyi |
10. The Guelph Plot Analyzer: Semi-Automatic Extraction of Small-Plot Research Data from Aerial ImagerySmall-plot trials are the foundation of open-field agricultural research because they strike a balance between the control of an artificial environment and the realism of field-scale production. However, the size and scope of this research field is often limited by the ability to collect data, which is limited by access to labour. Remote sensing has long been investigated to allocate labour more efficiently, therefore enabling the rapid collection of data. Imagery collected by unmanned aerial... J. Nederend, D. Drover, B. Reiche, B. Deen, L. Lee, G.W. Taylor |
11. Machine Monitoring As a Smartfarming Concept ToolCurrent development trends are associated with the digitization of production processes and the interconnection of individual information layers from multiple sources into common databases, contexts and functionalities. In order to automatic data collection of machine operating data, the farm tractors were equipped with monitoring units ITineris for continuous collection and transmission of information from tractors CAN Bus. All data sets are completed with GPS location data. Acreage... M. Kroulik, V. Brant, P. Zabransky, J. Chyba, V. Krcek, M. Skerikova |
12. Wheat Biomass Estimation Using Visible Aerial Images and Artificial Neural NetworkIn this study, visible RGB-based vegetation indices (VIs) from UAV high spatial resolution (1.9 cm) remote sensing images were used for modeling shoot biomass of two Brazilian wheat varieties (TBIO Toruk and BRS Parrudo). The approach consists of a combination of Artificial Neural Network (ANN) with several Vegetation Indices to model the measured crop biomass at different growth stages. Several vegetation indices were implemented: NGRDI (Normalized Green-Red Difference Index), CIVE (Color Index... M.R. De souza, T.D. Bertani, A. Parraga, C. Bredemeier, C. Trentin, D. Doering, A. Susin, M. Negreiros |
13. Variety Effects on Cotton Yield Monitor CalibrationWhile modern grain yield monitors are able to harvest variety and hybrid trials without imposing bias, cotton yield monitors are affected by varietal properties. With planters capable of site-specific planting of multiple varieties, it is essential to better understand cotton yield monitor calibration. Large-plot field experiments were conducted with two southeast Missouri cotton producers to compare yield monitor-estimated weights and observed weights in replicated variety trials. Two replications... E. Vories, A. Jones, G. Stevens, C. Meeks |
14. Estimating Corn Biomass from RGB Images Acquired with an Unmanned Aerial VehicleAbove-ground biomass, along with chlorophyll content and leaf area index (LAI), is a key biophysical parameter for crop monitoring. Being able to estimate biomass variations within a field is critical to the deployment of precision farming approaches such as variable nitrogen applications. With unprecedented flexibility, Unmanned Aerial Vehicles (UAVs) allow image acquisition at very high spatial resolution and short revisit time. Accordingly, there has been an increasing interest in... K. Khun, P. Vigneault, E. Fallon, N. Tremblay, C. Codjia, F. Cavayas |
15. Precision Irrigation Management Through Conjunctive Use of Treated Wastewater and Groundwater in OmanAgriculture under arid environment is always become a challenge due to water scarcity and salinity problems. With average rainfall of 100 mm, agriculture in Oman is limited due to the arid climate and limited arable lands. More than 50 percent of the arable lands are located in the 300 km northern coastal belt of Al-Batinah region. In addition, country is facing severe problem of sea water intrusion into the groundwater aquifers due to undisciplined excessive groundwater (GW) abstraction... H. Jayasuriya, A. Al-busaidi, M. Ahmed |
16. Rapid Acquisition of Site Specific Lime Requirement with Mid-Infrared SpectroscopyIn Germany, the lime requirement of arable topsoils is derived from the organic matter content, clay content, and pH(CaCl2). For this purpose, it is common practice to determine the lime requirement of a field size up to three hectares from only one composite soil sample, whereby site heterogeneity is regularly not taken into account. To consider site heterogeneity, a measurement technique is required which allows a rapid and high resolution data acquisition. Mid-infrared... M. Leenen, S. Pätzold, T. Heggemann, G. Welp |
17. Application of a Systems Model to a Spatially Complex Irrigated Agricultural System: A Case StudyAlthough New Zealand is water-rich, many of the intensively farmed lowland areas suffer frequent summer droughts. Irrigation schemes have been developed to move water from rivers and aquifers to support agricultural production. There is therefore a need to develop tools and recommendations that consider both water dynamics and outcomes in these irrigated cropping systems. A spatial framework for an existing systems model (APSIM Next Generation) was developed that could capture the variability... J. Sharp, C. Hedley |
18. Knowledge-based Approach for Weed Detection Using RGB ImageryA workflow was developed to explore the potential use of Phase One RGB for weed mapping in a herbicide efficacy trial in wheat. Images with spatial resolution of 0.8 mm were collected in July 2020 over an area of nearly 2000 square meters (66 plots). The study site was on a research farm at the University of Saskatchewan, Canada. Wheat was seeded on June 29, 2020, at a rate of 75 seeds per square meter with a row spacing of 30.5 cm. The weed species seeded in the trial were kochia, wild oat, wild... T. Ha, K. Aldridge, E. Johnson, S.J. Shirtliffe, S. Ryu |
19. Modulated On-farm Response Surface Experiments with Image-based High Throughput Techniques for Evidence-based Precision AgronomyAgronomic research is vital to determining optimum inputs for crops to perform profitably at a local scale. However, the small-plot experiment validity is often uncertain due to on-farm variations. Furthermore, the likelihood of conducting a fully randomized trial at a local farm is low given various practical and technical challenges. We propose a new methodology with many inputs to allow for a response surface that fits the yield response to the input levels with higher accuracy to make on-farm... A.U. Attanayake, E.U. Johnson, H.U. Duddu, S.U. Shirtliffe |
20. Establishment of a Canola Emergence Assessment Methodology Using Image-based Plant Count and Ground Cover AnalysisManual assessment of emergence is a time-consuming practice that must occur within a short time-frame of the emergence stage in canola (Brassica napus). Unmanned aerial vehicles (UAV) may allow for a more thorough assessment of canola emergence by covering a wider scope of the field and in a more timely manner than in-person evaluations. This research aims to calibrate the relationship between emerging plant population count and the ground cover. The field trial took place at the University... K. Krys, S. Shirtliffe, H. Duddu, T. Ha, A. Attanayake, E. Johnson, E. Andvaag, I. Stavness |
21. Predicting Below and Above Ground Peanut Biomass and Maturity Using Multi-target RegressionPeanut growth and maturity prediction can help farmers and breeding programs improving crop management. Remote sensing images collected by satellites and drones make possible and accurate crop monitoring. Today, empirical relations between crop biomass and spectral reflectance could be used for prediction of single variables such as aboveground crop biomass, pod weight (PW), or peanut maturity. Robust algorithms such as multioutput regression (MTR) implemented through multioutput random forest... M.F. Oliveira, F.M. Carneiro, M. Thurmond, M.D. Del val, L.P. Oliveira, B. Ortiz, A. Sanz-saez, D. Tedesco |
22. Coupling Machine Learning Algorithms and GIS for Crop Yield Predictions Based on Remote Sensing Imagery and Topographic IndicesIn-season yield prediction can support crop management decisions helping farmers achieve their yield goals. The use of remote sensing to predict yield it is an alternative for non-destructive yield assessment but coupling auxiliary data such as topography features could help increase the accuracy of yield estimation. Predictive algorithms that can effectively identify, process and predict yield at field scale base on remote sensing and topography still needed. Machine learning could be an alternative... M.F. Oliveira, G.T. Morata, B. Ortiz, R.P. Silva, A. Jimenez |
23. Multi-sensor Remote Sensing: an AI-driven Framework for Predicting Sugarcane FeedstockPredicting saccharine and bioenergy feedstocks in sugarcane enables stakeholders to determine the precise time and location for harvesting a better product in the field. Consequently, it can streamline workflows while enhancing the cost-effectiveness of full-scale production. On one hand, Brix, Purity, and total reducing sugars (TRS) can provide meaningful and reliable indicators of high-quality raw materials for industrial food and fuel processing. On the other hand, Cellulose, Hemicellulose,... M. Barbosa, D. Duron, F. Rontani, G. Bortolon, B. Moreira, L. Oliveira, T. Setiyono, L. Shiratsuchi, R.P. Silva, K.H. Holland |
24. Cherry Yield Forecast: Harvest Prediction for Individual Sweet Cherry TreesDigitalization continues to transform the agricultural sector as a whole and also affects specific niches like horticulture. Particularly in fruit and wine production, the focus is on the application of sensor systems and data analysis aiming at automated detection of drought stress or pests in vineyards or orchards. As part of the “For5G” project, we are developing an end-to-end methodology for the creation of digital twins of fruit trees, with a strong focus... A. Gilson, L. Meyer, A. Killer, F. Keil, O. Scholz, D. Kittemann, P. Noack, P. Pietrzyk, C. Paglia |
25. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System ImageryIn the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-throughput... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff |
26. Assessing Precision Water Management in Cotton Using Unmanned Aerial Systems and Satellite Remote SensingThe goal of this study was to improve agricultural sustainability and water use efficiency by allocating the right amount of water at the right place and time within the field. The objectives were to assess the effect of variable rate irrigation (VRI) on cotton growth and yield and evaluate the application of satellites and Unmanned aerial systems (UAS) in capturing the spatial and temporal patterns of cotton growth response to irrigation. Irrigation treatments with six replications of three different... O. Adedeji, W. Guo, H. Alwaseela, B. Ghimire, E. Wieber, R. Karn |
27. Use of Crop and Drought Spectral Indices to Support Harvest Decisions of Peanut Fields in AlabamaHarvest efficiency expressed in quantity and quality of peanut fields could increase if farmers are provided with tools to support harvest decisions. Peanut farmers still rely on a visual and empiric method to assess the right time of peanut maturity but this method does not account for within-field variability of crop growth and maturity. The integration of spectral vegetation indices to assess drought, soil moisture, and crop growth to predict peanut maturity can help farmers strengthen decisions... M.F. Oliveira, B.V. Ortiz, E. Hanyabui, J.B. Costa souza, A. Sanz-saez, S. Luns hatum de almeida , C. Pilcon, G. Vellidis |