Proceedings

Find matching any: Reset
Menendez III, H
Rascher, U
Lowenberg‑DeBoer, J
Add filter to result:
Authors
Muller, O
Cendrero Mateo, M.P
Albrecht, H
Pinto, F
Mueller-Linow, M
Pieruschka, R
Schurr, U
Rascher, U
Schickling, A
Keller, B
Muller, O
Keller, B
Zimmermanm, L
Jedmowski, C
Pingle, V
Acebron, K
Zendonadi, N
Steier, A
Pieruschka, R
Schurr, U
Rascher, U
Kraska, T
Al Amin, A
Lowenberg‑DeBoer, J
Franklin, K
Behrendt, K
Alahe, M
Chang, Y
Kemeshi, J.O
Gummi, S
Menendez III, H
Topics
Precision Agriculture and Climate Change
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Robotics, Guidance and Automation
Site-Specific Pasture Management
Type
Oral
Year
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results4 paper(s) found.

1. Field Phenotyping Infrastructure in a Future World - Quantifying Information on Plant Structure and Function for Precision Agriculture and Climate Change

Phenotyping in the field is an essential step in the phenotyping chain. Phenotyping begins in the well-defined, controlled conditions in laboratories and greenhouses and extends to heterogeneous, fluctuating environments in the field. Field measurements represent a significant reference point for the relevance of the laboratory and greenhouse approaches and an important source of information on potential mechanisms and constraints for plant performance tested at controlled conditions. In this... O. Muller, M.P. Cendrero mateo, H. Albrecht, F. Pinto, M. Mueller-linow, R. Pieruschka, U. Schurr, U. Rascher, A. Schickling, B. Keller

2. Field Phenotyping and an Example of Proximal Sensing of Photosynthesis

Field phenotyping conceptually can be divided in five pillars 1) traits of interest 2) sensors to measure these traits 3) positioning systems to allow high throughput measurements by the sensors 4) experimental sites and 5) environmental monitoring. In this paper we will focus on photosynthesis as trait of interest, measured by remote active fluorescence. The sensor presented is the Light Induced Fluorescence Transient (LIFT) instrument. The LIFT instrument is integrated in three positioning systems.... O. Muller, B. Keller, L. Zimmermanm, C. Jedmowski, V. Pingle, K. Acebron, N. Zendonadi, A. Steier, R. Pieruschka, U. Schurr, U. Rascher, T. Kraska

3. Economics of Field Size for Autonomous Crop Machines

Field size constrains spatial and temporal management of agriculture with implications for farm profitability, field biodiversity and environmental performance. Large, conventional equipment struggles to farm small, irregularly shaped fields efficiently. The study hypothesized that autonomous crop machines would make it possible to farm small non-rectangular fields profitably, thereby preserving field biodiversity and other environmental benefits. Using the experience of the Hands Free Hectare... A. Al amin, J. Lowenberg‑deboer, K. Franklin, K. Behrendt

4. Design of an Automatic Travelling Electric Fence System for Sustainable Grazing Management

Fences are used in Precision Livestock Farming (PLF) to prevent herbivores from overgrazing and under grazing forages. While effective in controlling animal entry and exit, traditional fences are not flexible enough to meet the needs of both foraging animals and plants in terms of both nutrient availability and physiological demands. An electric fencing system is a form of traditional fencing that employs an electric charge to create a barrier and dissuade animals or people from crossing it. Even... M. Alahe, Y. Chang, J.O. Kemeshi, S. Gummi, H. Menendez iii