Proceedings
Authors
| Filter results4 paper(s) found. |
|---|
1. Field Phenotyping Infrastructure in a Future World - Quantifying Information on Plant Structure and Function for Precision Agriculture and Climate ChangePhenotyping in the field is an essential step in the phenotyping chain. Phenotyping begins in the well-defined, controlled conditions in laboratories and greenhouses and extends to heterogeneous, fluctuating environments in the field. Field measurements represent a significant reference point for the relevance of the laboratory and greenhouse approaches and an important source of information on potential mechanisms and constraints for plant performance tested at controlled conditions. In this... O. Muller, M.P. Cendrero mateo, H. Albrecht, F. Pinto, M. Mueller-linow, R. Pieruschka, U. Schurr, U. Rascher, A. Schickling, B. Keller |
2. Field Phenotyping and an Example of Proximal Sensing of PhotosynthesisField phenotyping conceptually can be divided in five pillars 1) traits of interest 2) sensors to measure these traits 3) positioning systems to allow high throughput measurements by the sensors 4) experimental sites and 5) environmental monitoring. In this paper we will focus on photosynthesis as trait of interest, measured by remote active fluorescence. The sensor presented is the Light Induced Fluorescence Transient (LIFT) instrument. The LIFT instrument is integrated in three positioning systems.... O. Muller, B. Keller, L. Zimmermanm, C. Jedmowski, V. Pingle, K. Acebron, N. Zendonadi, A. Steier, R. Pieruschka, U. Schurr, U. Rascher, T. Kraska |
3. Economics of Field Size for Autonomous Crop MachinesField size constrains spatial and temporal management of agriculture with implications for farm profitability, field biodiversity and environmental performance. Large, conventional equipment struggles to farm small, irregularly shaped fields efficiently. The study hypothesized that autonomous crop machines would make it possible to farm small non-rectangular fields profitably, thereby preserving field biodiversity and other environmental benefits. Using the experience of the Hands Free Hectare... A. Al amin, J. Lowenberg‑deboer, K. Franklin, K. Behrendt |
4. Design of an Automatic Travelling Electric Fence System for Sustainable Grazing ManagementFences are used in Precision Livestock Farming (PLF) to prevent herbivores from overgrazing and under grazing forages. While effective in controlling animal entry and exit, traditional fences are not flexible enough to meet the needs of both foraging animals and plants in terms of both nutrient availability and physiological demands. An electric fencing system is a form of traditional fencing that employs an electric charge to create a barrier and dissuade animals or people from crossing it. Even... M. Alahe, Y. Chang, J.O. Kemeshi, S. Gummi, H. Menendez iii |