Proceedings
Authors
| Filter results25 paper(s) found. |
|---|
1. Cotton Precision Farming Adoption In The Southern United States: Findings From A 2009 SurveyThe objectives of this study were 1) to determine the status of precision farming technology adoption by cotton producers in 12 states and 2) to evaluate changes in cotton precision farming technology adoption between 2000 and 2008. A mail survey of cotton producers located in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas and Virginia was conducted in February and March of 2009 to establish the use of precision farming technologies... M. Velandia, D.F. Mooney, R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, S.L. Larkin, M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, C. Wang, E. Segarra, J.M. Reeves |
2. NDVI 'Depression' In Pastures Following GrazingPasture biomass estimation from normalized difference vegetation index (NDVI) using ground, air or space borne sensors is becoming more widely used in precision agriculture. Proximal active optical sensors (AOS) have the potential to eliminate the confounding effects of path radiance and target illumination conditions typically encountered using passive sensors. Any algorithm that infers the green fraction of pasture from NDVI must factor in plant morphology and live/dead plant ratio, irrespective... J.S. Stanley, D.W. Lamb, M.G. Trotter, M.M. Rahman |
3. Wireless Sensor System for Variable Rate IrrigationVariable rate irrigation (VRI) systems use intelligent electronic devices to control individual sprinklers or groups of sprinklers to deliver the desired amount irrigation water at each specific location within a field according to VRI prescriptions. Currently VRI systems, including software tools for generate prescription maps, are commercially available for VRI practices. However, algorithms and models are required to determine the desired amount of water that needs to be applied based on the... R. Sui, J. Baggard |
4. Canopy Parameters in Coffee Orchards Obtained by a Mobile Terrestrial Laser ScannerThe application of mobile terrestrial laser scanner (MTLS) has been studied for different tree crops such as citrus, apple, olive, pears and others. Such sensing system is capable of accurately estimating relevant canopy parameters such as volume and can be used for site-specific applications and for high throughput plant phenotyping. Coffee is an important tree crop for Brazil and could benefit from MTLS applications. Therefore, the purpose of this research was to define a field protocol for... F. Hoffmann silva karp, A. Feritas colaço, R. Gonçalves trevisan, J.P. Molin |
5. Levels of Inclusion of Crambe Meal (Crambe Abyssinica Hochst) in Sheep Diet on the Balance of Nitrogen and Ureic Nitrogen in the Blood SerumCrambe meal, which is a co-product of biodiesel production, is a potential substitute for conventional protein sources in ruminant diets. The objective of this study was to evaluate the effect of the substitution of crude protein of the concentrate by crude protein of crambe meal with increasing levels (0, 25, 50, and 75%) on nitrogen balance and blood plasma urea nitrogen concentration in sheep. Four male sheep, rumen fistulated, were placed in metabolic crates and distributed in a 4 x 4 Latin... K.K. De azevedo, D.M. Figueiredo, M.G. De sousa, G.M. Dallago, R.R. Silveira, L.D. Da silva, L.N. Rennó, R.A. Santos |
6. Efficiency of Microbial Synthesis and the Flow of Nitrogen Compounds in Sheep Receiving Crambe Meal (Crambe Abyssinica Hochst) Replacing the Concentrade Crude ProteinThe objective of this study was to evaluate the effect of increasing levels (0, 25, 50, 75%) of crude protein substitution of the concentrate by crude protein of crambe meal on microbial protein synthesis and the flow of microbial nitrogen compounds in sheep. Four rumen fistulated sheep (18 months and initial average body weight of 50 kg) were distributed in a 4 x 4 Latin square design. Diets were balanced to meet the requirements for minimum gains, containing approximately 14% crude protein and... K.K. De azevedo, D.M. Figueiredo, G.M. Dallago, J.A. Vieira, R.R. Silveira, L.D. Da silva, R.A. Santos, L.N. Rennó, G.B. Pacheco |
7. Effectiveness of UAV-Based Remote Sensing Techniques in Determining Lettuce Nitrogen and Water StressesThis paper presents the results of the investigation on the effectiveness of UAV-based remote sensing data in determining lettuce nitrogen and water stresses. Multispectral images of the experimental lettuce plot at Cal Poly Pomona’s Spadra farm were collected from a UAV. Different rows of the lettuce plot were subject to different level of water and nitrogen applications. The UAV data were used in the determination of various vegetation indices. Proximal sensors used for ground-truthing... S. Bhandari, A. Raheja, M.R. Chaichi, R.L. Green, D. Do, M. Ansari, J.G. Wolf, A. Espinas, F.H. Pham, T.M. Sherman |
8. Using Prescription Maps for in Field Evaluations of Parameteres Affecting Spraying Accuracy of Self-propelled SprayerWeed presence continues to reemerge year over year, chemical costs continue to increase, and chemical usage continuing to face increasing government oversight, are just a few of the challenges that site-specific weed management intends to address by minimizing wasted application of chemicals and reducing environmental load of active ingredients. Thus, sprayer system manufacturers have developed precision spray systems that allow the individual spray nozzles to be controlled precisely. These spray... J. Mayer, P. Flores, J. Stenger |
9. Scaling Up Window-based Regression for Crop-row DetectionCrop-row detection is a central element of weed detection and agricultural image processing tasks. With the increased availability of high-resolution imagery, a precise locating of crop rows is becoming practical in the sense that the necessary data are commonly available. However, conventional image processing techniques often fail to scale up to the data volumes and processing time expectations. We present an approach that computes regression lines over... A.M. Denton, G.E. Hokanson, P. Flores |
10. Comparison of Canopy Extraction Methods from UAV Thermal Images for Temperature Mapping: a Case Study from a Peach OrchardCanopy extraction using thermal images significantly affects temperature mapping and crop water status estimation. This study aimed to compare several canopy extraction methodologies by utilizing a large database of UAV thermal images from a precision irrigation trial in a peach orchard. Canopy extraction using thermal images can be attained by purely statistical analysis (S), a combination of statistical and spatial analyses (SS), or by synchronizing thermal and RGB images, following RGB statistical... L. Katz, A. Ben-gal, I. Litaor, A. Naor, A. Peeters, E. Goldshtein, V. Alchanatis, Y. Cohen |
11. Comparison and Validation of Different Soil Survey Techniques to Support a Precision Agricultural SystemThe data need of precision agriculture has resulted in an intensive increase in the number of modern soil survey equipment and methods available for farmers and consultants. In many cases these survey methods cannot provide accurate information under the used environmental conditions. On a 36 hectare experimental field, several methods have been compared to identify the ones which can support the PA system the best. The methods included contact and non contact soil scanning, yield mapping, high... V. Lang, G. Tóth, S. Csenki, D. Dafnaki |
12. Increasing the Accuracy of UAV-Based Remote Sensing Data for Strawberry Nitrogen and Water Stress DetectionThis paper presents the methods to increase the accuracy of unmanned aerial vehicles (UAV)-based remote sensing data for the determination of plant nitrogen and water stresses with increased accuracy. As the demand for agricultural products is significantly increasing to keep up with the growing population, it is important to investigate methods to reduce the use of water and chemicals for water conservation, reduction in the production cost, and reduction in environmental impact. UAV-based remote... S. Bhandari, A. Raheja |
13. Assessment of Goss Wilt Disease Severity Using Machine Learning Techniques Coupled with UAV ImageryGoss Wilt has become a common disease in corn fields in North Dakota. It has been one of the most yield-limiting diseases, causing losses of up to 50%. The current method to identify the disease is through visual inspection of the field, which is inefficient, and can be subjective, with misleading results, due to evaluator fatigue. Therefore, developing a reliable, accurate, and automated tool for assessing the severity of Goss's Wilt disease has become a top priority. The use of unmanned... A. Das, P. Flores, Z. Zhang , A. Friskop, J. Mathew |
14. Farmer Charlie - Low Cost Data Analytics for Farmers Accessible in the FieldFarmer Charlie, a spin-off of AB5 Consulting Ltd, is based on an affordable business model including five elements: a data analytics platform, an agribusiness ecosystem app, capable of connecting with local third-party apps; weather and in field sensors; wi-fi Internet connectivity; and power to the field and farms via solar panels, where necessary. Farmer Charlie brings information to farmers in their own fields, in an easy plug and play solution, affordable to the farmers and addressing their... B. Bonnardel |
15. Farmer Charlie - Low Cost Smart Local Data Available to Remote FarmersFarmer Charlie brings connectivity and information to farmers, who receive tailored agronomic data to improve their agricultural practice. Farmer Charlie is based on on-site sensors through which soil data can be detected, gathered, and processed by a dedicated server. Broadband communication allows farmers to receive real-time, localised information on tablet or mobile phone. Farmer Charlie is a low-cost solution, it can be adapted to various crops and to detect soil humidity, pH, temperature,... B. Bonnardel |
16. Land Cover and Crop Types Classification Using Sentinel-2A Derived Vegetation Indices and an Artificial Neural NetworkDevelopments in remote sensing data acquisition capabilities, data processing and interpretation of ground-based, airborne and satellite observations have made it possible to couple remote sensing technologies and precision crop management systems. Land cover and crop types classification is a fundamental task in remote sensing and is crucial in various environmental and agricultural applications. Accurate and timely information on land cover and crop types is essential for land management, land-use... B. Bantchina |
17. Evaluation of a Single Transect Method for Collecting Grape Samples Based on Sentinel-2 Imagery for the Characterization of Overall Vineyard PerformanceCommercial vineyards are streamed into different wine programs based on analysis of grape or juice samples collected from the field, but spatial and temporal variability can lead to sub-optimal tiering of grapes. This is a particularly difficult problem to overcome in the typically large vineyards of California’s Central Valley. Due to economic and laboratory constraints on sample collection, processing, and analysis, a single sample is often expected to represent the overall fruit quality... B. Sams, M. Aboutalebi, L. Sanchez, N. Dokoozlian, R. Bramley |
18. Dynamic Management Zones for Real-time Precision Agriculture OptimizationPrecision agriculture is an evolving management approach aimed at optimizing resource utilization, enhancing financial returns, and mitigating environmental impacts. The dynamic nature of agricultural conditions throughout a growing season necessitates the integration of innovative remote sensing and precision agriculture techniques. This research explores the creation of dynamic management zones (DMZ) that adapt in real-time to evolving soil and crop conditions. This study focuses on the establishment... A.H. Rabia, E. Eldeeb |
19. Modelling Hydrological Processes in a Wadi Basin in Egypt: Wadi Kharouba Case StudyWadi Flash Flood (WFF) is one of the most crucial problems facing the north‐western coastal region in Egypt. Water harvesting (WH) approaches may be an effective tool to reduce the WFF risk while storing the runoff water for agricultural activities. In this study, the Agarma sub-catchment of the Wadi Kharouba was taken as a reference investigation site to study terraced WA systems. The main problem in this area is that local farmers independently build terraces using traditional knowledge to... A.H. Rabia, E. Eldeeb, A. Coppola |
20. Leveraging UAV-based Hyperspectral Data and Machine Learning Techniques for the Detection of Powderly Mildew in VineyardsThis paper presents the development and validation of machine learning models for the detection of powdery mildew in vineyards. The models are trained and validated using custom datasets obtained from unmanned aerial vehicles (UAVs) equipped with a hyperspectral sensor that can collect images in visible/near-infrared (VNIR) and shortwave infrared (SWIR) wavelengths. The dataset consists of the images of vineyards with marked regions for powdery mildew, meticulously annotated using LabelImg. ... S. Bhandari, M. Acosta, C. Cordova gonzalez, A. Raheja, A. Sherafat |
21. Assessment of Soil Spatial Properties and Variability Using a Portable VIS-NIRS Soil Probe for On-farm Precision ExperimentationAssessing the spatial variability of soil properties represents an important issue for on-farm sustainable management owing to high cost of sampling densities. Actual methods of soil properties measurement are based on conventional soil sampling of one sample per ha, followed by laboratory analysis, requiring many soil extraction processes and harmful chemicals. This conventional laboratory analysis does not allow exploring spatial variation of soil properties at desired fine spatial scale. Thus,... A. Cambouris, M. Duchemin, E. Lord, N. Ziadi, B. Javed, J.D. Nze memiaghe, D.A. Ramirez-gonzalez |
22. Utilizing Thermal and RGB Imaging for Nutrient Deficiency and Chlorophyll Status Evaluation in PlantsAs global population growth and climate change continue to challenge food security, addressing agricultural issues efficiently and cost-effectively is vital for enhancing productivity. Integrating technology into agriculture, particularly through timely interventions, offers promising solutions to mitigate challenges before they escalate. This study investigates the feasibility of using thermal and RGB imaging as efficient, non-destructive methods to assess nutrient deficiencies and chlorophyll... A.H. Rabia, D.G. Allam, E.F. Abdelaty, E.A. Abderaouf |
23. Potato Disease Detection Using Laser Speckle Imaging and Deep LearningEarly detection of potato diseases is essential for minimizing crop loss. Implementing advanced imaging techniques can significantly improve the accuracy and efficiency of disease detection in potato crops. Leveraging machine learning algorithms can further enhance the speed and precision of disease identification, enabling timely intervention measures. This work presents a novel potato disease detection technique using whole-potato speckle imaging and deep learning. Laser Speckle Imaging (LSI),... A.H. Rabia, M.A. Salem |
24. Development of a High-throughput UAV System for Precision Weed Detection and Control Using Laser Speckle Imaging and UV-C IrradiationTraditional weed control methods, predominantly reliant on herbicides or labor-intensive ground robots, present notable environmental and efficiency challenges within agricultural practices. To address these concerns, this study introduces an innovative approach utilizing unmanned aerial vehicles (UAVs) for autonomous weed detection and control in agricultural fields. Our proposed system depends on the agility of UAV platforms, integrating two primary technologies. Firstly, Laser Speckle Imaging... M.A. Salem, A.H. Rabia |
25. North Dakota State University - Sponsor Presentation... L. Schumacher, P. Flores, R. Sun, A. Reinholz |