Proceedings

Find matching any: Reset
Scaramuzza, F
McKay, K
Figueiredo, D.M
Szatylowicz, J
Ritchie, G
Songchao, C
Mulla, D.J
Struthers, R.R
McVeagh, P.J
Jakimow, B
Barbosa, M
Add filter to result:
Authors
Franzen, D.W
Endres, G
Ashley, R
Staricka, J
Lukach, J
McKay, K
Grafton, M.Q
McVeagh, P.J
Pullanagari, R.R
Yule, I.J
Lianqing, Z
Zhou, S
Songchao, C
Yafei, Y
Struthers, R.R
Johannsen, C.J
Morris, D.K
Wilson, G.L
Mulla, D.J
Galzki, J
Laacouri, A
Vetsch, J
de Azevedo, K.K
Figueiredo, D.M
Dallago, G.M
Vieira, J.A
Silveira, R.R
da Silva, L.D
Santos, R.A
Rennó, L.N
Pacheco, G.B
Balboa, G
Puntel, L
Melchiori, R
Ortega, R
Tiscornia, G
Bolfe, E
Roel, A
Scaramuzza, F
Best, S
Berger, A
Hansel, D
Palacios, D
Samborski, S.M
Szatylowicz, J
Gnatowski, T
Leszczyńska, R
Thornton, M
Walsh, O
Balboa, G
Degioanni, A
Bongiovanni, R
Melchiori, R
Cerliani, C
Scaramuzza, F
Bongiovanni, M
Gonzalez, J
Balzarini, M
Videla, H
Amin, S
Esposito, G
Barbosa, M
Duron, D
Rontani, F
Bortolon, G
Moreira, B
Oliveira, L
Setiyono, T
Shiratsuchi, L
Silva, R.P
Holland, K.H
Barbosa, M
Oliveira, L
Tyson, C
Shirley, A
Santos, R
Sales, L
Vargas, R
Karn, R
Adedeji, O
Ghimire, B.P
Abdalla, A
Sheng, V
Ritchie, G
Guo, W
Ghimire, B
Karn, R
Adedeji, O
Ritchie, G
Guo, W
Barbosa, M
Santos, R
Sales, L
Oliveira, L
Pereira de Souza, F
Shiratsuchi, L
tao, H
Acconcia Dias, M
Barbosa, M
Deri Setiyono, T
Campos, S
Pereira de Souza, F
Shiratsuchi, L
tao, H
Acconcia Dias, M
Barbosa, M
Deri Setiyono, T
Campos, S
Thomas, L
Jakimow, B
Janz, A
Hostert, P
Lajunen, A
Topics
Precision A-Z for Practitioners
Spatial Variability in Crop, Soil and Natural Resources
Proximal Sensing in Precision Agriculture
Spatial and Temporal Variability in Crop, Soil and Natural Resources
In-Season Nitrogen Management
Farm Animals Health and Welfare Monitoring
ISPA Community: Latin America
On Farm Experimentation with Site-Specific Technologies
Education and Outreach in Precision Agriculture
Artificial Intelligence (AI) in Agriculture
Precision Horticulture
Precision Agriculture and Global Food Security
Decision Support Systems
Robotics and Automation with Row and Horticultural Crops
Data Analytics for Production Ag
Type
Poster
Oral
Year
2010
2014
2016
2008
2018
2022
2024
Home » Authors » Results

Authors

Filter results17 paper(s) found.

1. Revising Nitrogen Recommendations For Wheat In Response To The Need For Support Of Variable-rate Nitrogen Application

Sampling studies in North Dakota conducted from 1994 to 2003 showed that variable-rate N application could be practically directed with zone soil sampling. Results from variable-rate N studies using zone soil sampling were often less than rewarding due in part to the use of a whole-field predicted yield-based formula for developing the N recommendation in each zone. Nitrogen rate studies on spring wheat and durum were established in 2005 through 2009 to reexamine N recommendations. The results... D. Franzen, G. Endres, R. Ashley, J. Staricka, J. Lukach, K. Mckay

2. Exploiting The Variability In Pasture Production On New Zealand Hill Country.

New Zealand has about four million hectares in medium to steep hill country pasture to which granular solid fertiliser is applied by airplane.  On most New Zealand hill country properties where cultivation is not possible the only means of influencing pasture production yield is through the addition of fertilizers and paddock subdivision to control grazing and pasture growth rates. Pasture response to fertilizer varies in production zones within the farm which can be modelled... M.Q. Grafton, P.J. Mcveagh, R.R. Pullanagari, I.J. Yule

3. Development of Micro-tractor-based Measurement Device of Soil Organic Matter Using On-the-go Visual-near Infrared Spectroscopy in Paddy Fields of South China

Soil organic matter (SOM) is an essential soil property for assessing the fertility of paddy soils in South China. In this study, a set of micro-tractor-based on-the-go device was developed and integrated to measure in-situ soil visible and near infrared (VIS–NIR) spectroscopy and estimate SOM content. This micro-tractor-based on-the-go device is composed of a micro-tractor with toothed-caterpillar band, a USB2000+ VIS–NIR spectroscopy detector, a self-customized steel plow and a self-customized... Z. Lianqing, S. Zhou, C. Songchao, Y. Yafei

4. Soil Moisture, Organic Matter and Potassium Influences on Eca Measurement

Spatial variability of soil physical and chemical properties is a fundamental element of site-specific soil and crop management. Since its early implementation in agriculture as a method of measuring soil salinity, the acceptance of Apparent Electrical Conductivity (ECa) in agriculture has been popular as a method of determining the spatial variability of soil physical and chemical properties that influence the ECa estimates. It was the objective of this study to examine the spatial-temporal stability... R.R. Struthers, C.J. Johannsen, D.K. Morris

5. Predicted Nitrate-N Loads for Fall, Spring, and VRN Fertilizer Application in Southern Minnesota

Nitrate-N from agricultural fields is a source of pollution to fresh and marine waters via subsurface tile drainage.  Sensor-based technologies that allow for in-season monitoring of crop nitrogen requirements may represent a way to reduce nitrate-N loadings to surface waters by allowing for fertilizer application on a more precise spatial and temporal resolution.  However, little research has been done to determine its effectiveness in reducing nitrate-N losses.  In this study,... G.L. Wilson, D.J. Mulla, J. Galzki, A. Laacouri, J. Vetsch

6. Efficiency of Microbial Synthesis and the Flow of Nitrogen Compounds in Sheep Receiving Crambe Meal (Crambe Abyssinica Hochst) Replacing the Concentrade Crude Protein

The objective of this study was to evaluate the effect of increasing levels (0, 25, 50, 75%) of crude protein substitution of the concentrate by crude protein of crambe meal on microbial protein synthesis and the flow of microbial nitrogen compounds in sheep. Four rumen fistulated sheep (18 months and initial average body weight of 50 kg) were distributed in a 4 x 4 Latin square design. Diets were balanced to meet the requirements for minimum gains, containing approximately 14% crude protein and... K.K. De azevedo, D.M. Figueiredo, G.M. Dallago, J.A. Vieira, R.R. Silveira, L.D. Da silva, R.A. Santos, L.N. Rennó, G.B. Pacheco

7. How Digital is Agriculture in South America? Adoption and Limitations

A rapidly growing population in a context of land and water scarcity, and climate change has driven an increase in healthy, nutritious, and affordable food demand while maintaining the current cropping area. Digital agriculture (DA) can contribute solutions to meet the demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. This article presents the results from a systematic review... G. Balboa, L. Puntel, R. Melchiori, R. Ortega, G. Tiscornia, E. Bolfe, A. Roel, F. Scaramuzza, S. Best, A. Berger, D. Hansel, D. Palacios

8. Use of Remotely Measured Potato Canopy Characteristics As Indirect Yield Estimators

Prediction of potato yield before harvest is important for making agronomic and marketing decisions. Active optical sensors (AOS) are rarely used together with other hand-held instruments for monitoring potato growth, including yield prediction. The aim of the research was to determine the relationship between manually and remotely measured potato crop characteristics throughout the growing season and yield in commercial potato fields. Objective was also to identify crop characteristics that most... S.M. Samborski, J. Szatylowicz, T. Gnatowski, R. Leszczyńska, M. Thornton, O. Walsh

9. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in Argentina

The lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito

10. Multi-sensor Remote Sensing: an AI-driven Framework for Predicting Sugarcane Feedstock

Predicting saccharine and bioenergy feedstocks in sugarcane enables stakeholders to determine the precise time and location for harvesting a better product in the field. Consequently, it can streamline workflows while enhancing the cost-effectiveness of full-scale production. On one hand, Brix, Purity, and total reducing sugars (TRS) can provide meaningful and reliable indicators of high-quality raw materials for industrial food and fuel processing. On the other hand, Cellulose, Hemicellulose,... M. Barbosa, D. Duron, F. Rontani, G. Bortolon, B. Moreira, L. Oliveira, T. Setiyono, L. Shiratsuchi, R.P. Silva, K.H. Holland

11. UAV Multispectral Data As a Suitable Tool for Predicting Sweetness, Size, and Yield of Vidalia Onions

Vidalia onions is a specialty crop cultivated solely within the southeastern region of Georgia. The key distinguishing characteristic of Vidalia onions is its high sugar content, making them highly prized and widely consumed. Ten thousand acres are grown with Vidalia Onions each year approximately, and the market value (~$150Mi/year) makes the crop very important for the State of Georgia. Traditionally, the planting, weeding, spraying, harvesting, and post-harvesting operations are usually done... M. Barbosa, L. Oliveira, C. Tyson, A. Shirley, R. Santos, L. Sales, R. Vargas

12. Within Field Cotton Yield Prediction Using Temporal Satellite Imagery Combined with Deep Learning

Crop yield prediction at the field scale plays a pivotal role in enhancing agricultural management, a vital component in addressing global food security challenges. Regional or county-level data, while valuable for broader agricultural planning, often lacks the precision required by farmers for effective and timely field management. The primary obstacle in utilizing satellite imagery to forecast crop yields at the field level lies in its low temporal and spatial resolutions. This study aims to... R. Karn, O. Adedeji, B.P. Ghimire, A. Abdalla, V. Sheng, G. Ritchie, W. Guo

13. Simulating Climate Change Impacts on Cotton Yield in the Texas High Plains

Crop yield prediction enables stakeholders to plan farming practices and marketing. Crop models can predict crop yield based on cropping system and practices, soil, and other environmental factors. These models are being used for decision support in agriculture in a variety of ways. Cultivar selection, water and nutrient input optimization, planting date selection, climate change analysis and yield prediction are some of the promising area of applications of the models in field level farm management.... B. Ghimire, R. Karn, O. Adedeji, G. Ritchie, W. Guo

14. Advancements in Agricultural Robots for Specialty Crops: a Comprehensive Review of Innovations, Challenges, and Prospects

The emergence of robot technology presents a timely opportunity to revolutionize specialty crop production, offering crucial support across various activities such as planting, supporting general traits, and harvesting. These robots play a pivotal role in keeping stakeholders up-to-date of developments in their production fields, while providing them the capability to automate laborious tasks. Then, to elucidate the advancements in this domain, we present the results of a comprehensive review... M. Barbosa, R. Santos, L. Sales, L. Oliveira

15. Computer Vision by UAVs for Estimate Soybean Population Across Different Physiological Growth Stages and Sowing Speeds

Soybean (Glycine max (Linnaeus) Merrill) production in the United States plays a crucial role in agriculture, occupying a considerable amount of cultivated land. However, the costs associated with soybean production have shown a notable increase in recent years, with seed-related expenses accounting for a significant proportion of the total. This increase in costs is attributed to a number of factors, including the introduction of patented and protected genetic traits, as well as inflationary... F. Pereira de souza, L. Shiratsuchi, H. Tao, M. Acconcia dias, M. Barbosa, T. Deri setiyono, S. campos

16. Optimizing Soybean Management with UAV RGB and Multispectral Imagery: a Neural Network Method and Image Processing

Precision agriculture (PA) has emerged as a fundamental approach in contemporary agricultural management, aimed at maximizing efficiency in the use of resources and improving crop productivity. The transition to so-called "agriculture 4.0" represents a revolution in the way technology is applied in the field, with an emphasis on digital and automated solutions such as UAVs (Unmanned Aerial Vehicles). These devices offer new capabilities for capturing high-resolution images, enabling... F. Pereira de souza, L. Shiratsuchi, H. Tao, M. Acconcia dias, M. Barbosa, T. deri setiyono, S. Campos

17. Spectral Imaging Deep Learning Mapper for Precision Agriculture

With the growing variety of RGB cameras, spectral sensors, and platforms like field robots or unmanned aerial vehicles (UAV) in precision agriculture, there is a demand for straightforward utilization of collected field data. In recent years, deep learning has gained significant attention and delivered impressive results in the realm of computer vision tasks, such as semantic segmentation. These models have also found extensive applications in research related to precision agriculture and spectral... L. Thomas, B. Jakimow, A. Janz, P. Hostert, A. Lajunen