Proceedings

Find matching any: Reset
Aizpurua, A
Adolwa, I
Aasen, H
Alves, F
Anderson, W
Al-Gaadi, K
Albarenque, S.M
Aikes Junior, J
Al-Adawi, S
Acebron, K
Admasu, W.A
Add filter to result:
Authors
Unamunzaga, O
Castell, A
Besga, G
Perez-Parmo, R
Aizpurua, A
Jayasuriya, H.P
Al-Wardy, M
Al-Adawi, S
Al-Hinai, K
Kemerer, A.C
Albarenque, S.M
Melchiori, R.J
Aasen, H
Al-Gaadi, K
Hassaballa, A.A
Tola, E
Madugundu, R
Kayad, A.G
Saiz-Rubio, V
Diago, M
Tardaguila, J
Gutierrez, S
Rovira-Más, F
Alves, F
Castellón, A
Aizpurua, A
Aranguren, M
Muller, O
Keller, B
Zimmermanm, L
Jedmowski, C
Pingle, V
Acebron, K
Zendonadi, N
Steier, A
Pieruschka, R
Schurr, U
Rascher, U
Kraska, T
Aikes Junior, J
Souza, E.G
Bazzi, C
Sobjak, R
Hachisuca, A
Gavioli, A
Betzek, N
Schenatto, K
Moreira, W
Mercante, E
Rodrigues, M
Madugundu, R
Al-Gaadi, K
Tola, E
Mandal, D
Longchamps, L
Khosla, R
Admasu, W.A
Joshi, R
Khosla, R
Mandal, D
Unruh, R
Admasu, W.A
Unruh, R
Admasu, W.A
Mandal, D
Joshi, R
Khosla, R
Admasu, W.A
Mandal, D
Khosla, R
Admasu, W.A
Mandal, D
Khosla, R
Adolwa, I
Phillips, S
Akorede, B.A
Suleiman, A.A
Murrell, T
Zingore, S
Muthamia, J
Adolwa, I
Mutegi, J
Zingore, S
Phillips, S
Asgedom, H
Hehar, G
Willness, C
Anderson, W
Duddu, H
Mooleki, P
Schoenau, J
Khakbazan, M
Lemke, R
Derdall, E
Shang, J
Liu, K
Sulik, J
Karppinen, E
Mbakwe, I
Topics
Precision Nutrient Management
Precision Conservation Management
Applications of UAVs (unmanned aircraft vehicle systems) in precision agriculture
Remote Sensing Applications in Precision Agriculture
Precision Agriculture and Global Food Security
Robotics, Guidance and Automation
In-Season Nitrogen Management
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Decision Support Systems
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Artificial Intelligence (AI) in Agriculture
In-Season Nitrogen Management
Drainage Optimization and Variable Rate Irrigation
Decision Support Systems
Digital Agriculture Solutions for Soil Health and Water Quality
On Farm Experimentation with Site-Specific Technologies
Site-Specific Nutrient, Lime and Seed Management
Type
Oral
Poster
Year
2010
2014
2016
2018
2022
2024
Home » Authors » Results

Authors

Filter results18 paper(s) found.

1. Spatial And Vertical Distribution Of Soil P, K, And Mg Content In A Vineyard Of The Do Ca Rioja Using Grid And Target Sampling Methods

  Knowledge of spatial variability of soil nutrient contents is very important to design a fertilization strategy based on the needs of the vine. Matching fertilization and nutritional plant needs is very important due to the influence of nutritional status of vineyards on productive and qualitative factors. The aim of this work was to study the spatial and vertical variability of P, K and Mg in a vineyard soil by two methods: (i) the grid sampling at three depth ranges (0-30,... O. Unamunzaga, A. Castell, G. Besga, R. Perez-parmo, A. Aizpurua

2. GIS Mapping of Soil Compaction and Moisture Distribution for Precision Tillage and Irrigation Management

Soil compaction is one of the forms of physical change of soil structure which has positive and negative effects, in agriculture considered to make soil degradation. The undisciplined use of heavy load traffic or machinery in modern agriculture causes substantial soil compaction, counteracted by soil tillage that loosens the soil. Higher soil bulk densities affect resistance to root penetration, soil pore volume and permeability to air, and thus, finally the pore space habitable... H.P. Jayasuriya, M. Al-wardy, S. Al-adawi, K. Al-hinai

3. Unmanned Aerial System To Determine Nitrogen Status In Maize

Maize field production shows spatial variability during vegetative crop growth that could be used to prescribe nitrogen variable rates. The use of portable sensors mounted on high-clearance applicators is well documented, however new UAS vehicle equipped with high resolution digital cameras could be used to determine crop spatial variability with the advantage of survey extensive field areas. To our knowledge, comparisons between vegetation indices obtained by a modified digital camera and... A.C. Kemerer, S.M. Albarenque, R.J. Melchiori

4. High Resolution 3D Hyperspectral Digital Surface Models from Lightweight UAV Snapshot Cameras – Potentials for Precision Agriculture Applications

Precision agriculture applications need timely information about the plant status to apply the right management at the right place and the right time. Additionally, high-resolution field phenotyping can support crop breeding by providing reliable information for crop rating. Flexible remote sensing systems like unmanned aerial vehicles (UAVs) can gather high-resolution information when and where needed. When combined with specialized sensors they become powerful sensing systems. Hyperspectral... H. Aasen

5. Applying a Bivariate Frequency Ratio Technique for Potato High Yield Susceptibility Mapping

Spatial variation of soil characteristics and vegetation conditions are viewed as the most important indicators of crop yield status. Therefore, this study was designed to develop a crop yield prediction model through spatial autocorrelation between the actual yield of potato (Solanum tuberosum L.) crop and selected yield status indicators (soil N, EC, pH, texture and vegetation condition), where the vegetation condition was represented by the cumulative normalized difference vegetation index... K. Al-gaadi, A.A. Hassaballa, E. Tola, R. Madugundu, A.G. Kayad

6. Canopy Temperature Mapping with a Vineyard Robot

The wine industry is a strategic sector in many countries worldwide. High revenues in the wine market typically result in higher investments in specialized equipment, so that producers can introduce disruptive technology for increasing grape production and quality. However, many European producers are approaching retirement age, and therefore the agricultural sector needs a way for attracting young farmers who can assure the smooth transition between generations; digital technology offers an opportunity... V. Saiz-rubio, M. Diago, J. Tardaguila, S. Gutierrez, F. Rovira-más, F. Alves

7. Use of Field Diagnostic Tools for Top Dressing Nitrogen Recommendation When Organic Manures Are Applied in Humid Mediterranean Conditions

Nitrogen is often applied in excessive quantities, causing nitrogen losses. In recent years, the management of large quantities of manure and slurry compounds has become a challenge. The aim of this study was to assess the usefulness of the proxy tools Yara N-testerTMand RapidScan CS-45 for diagnosing the N nutritional status of wheat crops when farmyard manures were applied. Our second objective was to start designing a N fertilization strategy based on these measurements. To achieve these objectives,... A. Castellón, A. Aizpurua, M. Aranguren

8. Field Phenotyping and an Example of Proximal Sensing of Photosynthesis

Field phenotyping conceptually can be divided in five pillars 1) traits of interest 2) sensors to measure these traits 3) positioning systems to allow high throughput measurements by the sensors 4) experimental sites and 5) environmental monitoring. In this paper we will focus on photosynthesis as trait of interest, measured by remote active fluorescence. The sensor presented is the Light Induced Fluorescence Transient (LIFT) instrument. The LIFT instrument is integrated in three positioning systems.... O. Muller, B. Keller, L. Zimmermanm, C. Jedmowski, V. Pingle, K. Acebron, N. Zendonadi, A. Steier, R. Pieruschka, U. Schurr, U. Rascher, T. Kraska

9. Web Application for Automatic Creation of Thematic Maps and Management Zones - AgDataBox-Fast Track

Agriculture is challenging to produce more profitably, with the world population expected to reach some 10 billion people by 2050. Such a challenge can be achieved by adopting precision agriculture and digital agriculture (Agriculture 4.0). Digital agriculture (DA) has become a reality with the availability of cheaper and more powerful sensors, actuators and microprocessors, high-bandwidth cellular communication, cloud communication, and Big Data. DA enables information to flow from used agricultural... J. Aikes junior, E.G. Souza, C. Bazzi, R. Sobjak, A. Hachisuca, A. Gavioli, N. Betzek, K. Schenatto, W. Moreira, E. Mercante, M. Rodrigues

10. Employment of the SSEB and CROPWAT Models to Estimate the Water Footprint of Potato Grown in Hyper-arid Regions of Saudi Arabia

Quantifying crops’ water footprint (WF) is essential for sustainable agriculture especially in arid regions, which suffers from harsh environmental conditions and severe shortage of freshwater resources such as Saudi Arabia. In this study, WF of irrigated potato crop was estimated for the implementation of precision agriculture techniques. The CROPWAT and the Simplified Surface Energy Balance (SSEB) approaches were adopted. Soil, plant, and yield samples were randomly collected from six... R. Madugundu, K. Al-gaadi, E. Tola

11. Optimal Placement of Soil Moisture Sensors in an Irrigated Corn Field

Precision agricultural practices rely on characterization of spatially and temporally variable soil and crop properties to precisely synchronize inputs (water, fertilizer, etc.) to crop needs; thereby enhancing input use efficiency and farm profitability. Generally, the spatial dependency range for soil water content is shorter near the soil surface compared to deeper depths, suggesting a need for more sampling locations to accurately characterize near-surface soil water content. However, determining... D. Mandal, L. Longchamps, R. Khosla

12. Delineation of Site-Specific Management Zones using Sensor-based Data for Precision N management

Nitrogen is a critical nutrient influencing crop yield, but the common practice of uniform application of nitrogen fertilizer across a field often results in spatially variable nitrogen availability for the crop, leading to over-application in some areas and under-application in others. This imbalance can cause economic losses and significant environmental issues. Precision nitrogen application involves application of N fertilizers based on soil conditions and crop requirements. One approach for... R. Joshi, R. Khosla, D. Mandal, R. Unruh, W.A. Admasu

13. Delineating Dynamic Variable Rate Irrigation Management Zones

Agriculture irrigation strategies have traditionally been made without accounting for the natural small-scale variability in the field, leading to uniform applications that often over-irrigate parts of the field that do not need as much water. The future success of irrigated agriculture depends on advancements in the capability to account for and leverage the natural variability in croplands for optimum irrigation management both in space and time. Variable Rate Irrigation (VRI) management offers... R. Unruh, W.A. Yilma, D. Mandal, R. Joshi, R. Khosla

14. Coupling Macro-scale Variability in Soil and Micro-scale Variability in Crop Canopy for Delineation of Site-specific Management Grid

The efficient application of fertilizers via Site-Specific Management Units (SSMUs) or Management Zones (MZs) can significantly enhance crop productivity and nitrogen use efficiency. Conventional mathematical and data-driven clustering methods for MZ delineation, while prevalent, often lack precision in identifying productivity zones. This research introduces a knowledge-driven productivity zone to mitigate these limitations, offering a more precise and efficacious approach. The hypothesis... W.A. Admasu, D. Mandal, R. Khosla

15. Hyperspectral Sensing to Estimate Soil Nitrogen and Reduce Soil Sampling Intensity

Recognizing soil's critical role in agriculture, swift and accurate quantification of soil components, specifically nitrogen, becomes paramount for effective field management. Traditional laboratory methods are time-consuming, prone to errors, and require hazardous chemicals. Consequently, this research advocates the use of non-imaging hyperspectral data and VIS-NIR spectroscopy as a safer, quicker, and more efficient alternative. These methods take into account various soil components, including... W.A. Admasu, D. Mandal, R. Khosla

16. Operationalization of On-farm Experimentation in African Cereal Smallholder Farming Systems

Past efforts have concentrated on linear or top-down approaches in delivering precision nutrient management (PNM) practices to smallholder farmers. These deliberate attempts at increasing adoption of PNM practices have not yielded the expected outcomes, that is, increased productivity and nutrient use efficiency, at scale. This is because technologies generated by scientists with minimal farmer involvement often are not well tailored to the attendant agro-ecological, socio-economic, and cultural... I. Adolwa, S. Phillips, B.A. Akorede, A.A. Suleiman, T. Murrell, S. Zingore

17. Harnessing Farmers’, Researchers’ and Other Stakeholders’ Knowledge and Experiences to Create Shared Value from On-farm Experimentation: Lessons from Kenya

Achieving greater sustainability in farm productivity is a major challenge facing smallholder farmers in Kenya. Existing technologies have not solved the challenges around declining productivity because they are one-size-fits-all that doesn’t account for the diverse smallholder contexts. A study was carried out in Kenya by a multi-disciplinary team to assess the value of On-Farm Experimentation (OFE) to tailor technologies to local conditions. The OFE process begun with identification of... J. Muthamia, I. Adolwa, J. Mutegi, S. Zingore, S. Phillips

18. Response of Canola and Wheat to Application of Enhanced Efficiency Nitrogen Fertilizers on Contrasting Management Zones

Investment on nitrogen (N) fertilizers is a major cost of growers, and variable rate (VR) application of N fertilizers could help optimize its usage. In the growing season of 2023, field experiments were conducted at four sites (i.e., Watrous – Saskatchewan SK and two fields in the vicinity of Strathmore, Alberta AB, Canada). The main objectives were to (i) determine performance of Enhanced Efficiency N Fertilizers - EENF (i.e., Coated urea, urea with double inhibitors - DI, urea mixed with... H. Asgedom, G. Hehar, C. Willness, W. Anderson, H. Duddu, P. Mooleki, J. Schoenau, M. Khakbazan, R. Lemke, E. derdall, J. Shang, K. Liu, J. Sulik, E. Karppinen, I. Mbakwe