Proceedings
Authors
| Filter results6 paper(s) found. |
|---|
1. Cotton Precision Farming Adoption In The Southern United States: Findings From A 2009 SurveyThe objectives of this study were 1) to determine the status of precision farming technology adoption by cotton producers in 12 states and 2) to evaluate changes in cotton precision farming technology adoption between 2000 and 2008. A mail survey of cotton producers located in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, South Carolina, Tennessee, Texas and Virginia was conducted in February and March of 2009 to establish the use of precision farming technologies... M. Velandia, D.F. Mooney, R.K. Roberts, B.C. English, J.A. Larson, D.M. Lambert, S.L. Larkin, M.C. Marra, R. Rejesus, S.W. Martin, K.W. Paxton, A. Mishra, C. Wang, E. Segarra, J.M. Reeves |
2. Effectiveness of UAV-Based Remote Sensing Techniques in Determining Lettuce Nitrogen and Water StressesThis paper presents the results of the investigation on the effectiveness of UAV-based remote sensing data in determining lettuce nitrogen and water stresses. Multispectral images of the experimental lettuce plot at Cal Poly Pomona’s Spadra farm were collected from a UAV. Different rows of the lettuce plot were subject to different level of water and nitrogen applications. The UAV data were used in the determination of various vegetation indices. Proximal sensors used for ground-truthing... S. Bhandari, A. Raheja, M.R. Chaichi, R.L. Green, D. Do, M. Ansari, J.G. Wolf, A. Espinas, F.H. Pham, T.M. Sherman |
3. Increasing the Accuracy of UAV-Based Remote Sensing Data for Strawberry Nitrogen and Water Stress DetectionThis paper presents the methods to increase the accuracy of unmanned aerial vehicles (UAV)-based remote sensing data for the determination of plant nitrogen and water stresses with increased accuracy. As the demand for agricultural products is significantly increasing to keep up with the growing population, it is important to investigate methods to reduce the use of water and chemicals for water conservation, reduction in the production cost, and reduction in environmental impact. UAV-based remote... S. Bhandari, A. Raheja |
4. Land Cover and Crop Types Classification Using Sentinel-2A Derived Vegetation Indices and an Artificial Neural NetworkDevelopments in remote sensing data acquisition capabilities, data processing and interpretation of ground-based, airborne and satellite observations have made it possible to couple remote sensing technologies and precision crop management systems. Land cover and crop types classification is a fundamental task in remote sensing and is crucial in various environmental and agricultural applications. Accurate and timely information on land cover and crop types is essential for land management, land-use... B. Bantchina |
5. Leveraging UAV-based Hyperspectral Data and Machine Learning Techniques for the Detection of Powderly Mildew in VineyardsThis paper presents the development and validation of machine learning models for the detection of powdery mildew in vineyards. The models are trained and validated using custom datasets obtained from unmanned aerial vehicles (UAVs) equipped with a hyperspectral sensor that can collect images in visible/near-infrared (VNIR) and shortwave infrared (SWIR) wavelengths. The dataset consists of the images of vineyards with marked regions for powdery mildew, meticulously annotated using LabelImg. ... S. Bhandari, M. Acosta, C. Cordova gonzalez, A. Raheja, A. Sherafat |
6. Assessment of Soil Spatial Properties and Variability Using a Portable VIS-NIRS Soil Probe for On-farm Precision ExperimentationAssessing the spatial variability of soil properties represents an important issue for on-farm sustainable management owing to high cost of sampling densities. Actual methods of soil properties measurement are based on conventional soil sampling of one sample per ha, followed by laboratory analysis, requiring many soil extraction processes and harmful chemicals. This conventional laboratory analysis does not allow exploring spatial variation of soil properties at desired fine spatial scale. Thus,... A. Cambouris, M. Duchemin, E. Lord, N. Ziadi, B. Javed, J.D. Nze memiaghe, D.A. Ramirez-gonzalez |