Proceedings
Authors
| Filter results22 paper(s) found. |
|---|
1. Computer Aided Engineering Analysis and Design Optimization for Precision Manufacturing of Tillage Tool: Sweep CultivatorThe process optimization in advance tillage tool system conceptually designed and fabricated by computer aided engineering analysis techniques. The Software testing a field performance is taken in the soil bed preparation as well as in the various crop patterns. It was found most use full in obtaining high weed removal efficiency. The precision geometry, optimum energy utilization, multi-operational design, easy transport and flexible attachments are some of the features which results in achieving... G.U. Shinde, D.M. Salokhe, P.D. Badgujar, D.B. Sharma |
2. Detection Of Nitrogen Deficiency In Potatoes Using Small Unmanned Aircraft SystemsSmall Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. A nitrogen rate experiment was established in 2013 with ‘Ranger Russet’ potatoes by applying four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized block design with 3 replicates. A Tetracam Hawkeye sUAS and Agricultural Digital Camera Lite sensor were used to collect imagery with near-infrared... D.A. Horneck, D.J. Gadler, A.E. Bruce, R.W. Turner, C.B. Spinelli, J.J. Brungardt, P.B. Hamm, E. Hunt |
3. An Inexpensive Aerial Platform For Precise Remote Sensing Of Almond And Walnut Canopy TemperatureCurrent irrigation practices depend largely on imprecise applications of water over fields with varying degrees of heterogeneity. In most cases, the amount of water applied over a given field is determined by the amount the most water-stressed part of the field needs. This equates to over-watering most of the field in order to satisfy the needs of one part of the field. This approach not only wastes resources, but can have a detrimental effect on the value of that crop. A system to... K. Crawford, S. Upadhyaya, R. Dhillon, F. Rojo, J. Roach |
4. Within-field Profitability Assessment: Impact of Weather, Field Management and SoilsProfitability in crop production is largely driven by crop yield, production costs and commodity prices. The objective of this study was to quantify the often substantial yet somewhat illusive impact of weather, management, and soil spatial variability on within-field profitability in corn and soybean crop production using profitability indices for profit (net return) and return-on-investment (ROI) to produce estimates. We analyzed yield and cropping system data provided by 42 farmers within Central... P.M. Kyveryga, S. Fey, J. Connor, A. Kiel, D. Muth |
5. Active Canopy Sensors for the Detection of Non-Responsive Areas to Nitrogen Application in WheatActive canopy sensors offer accurate measurements of crop growth status that have been used in real time to estimate nitrogen (N) requirements. NDVI can be used to determine the absolute amount of fertilizer requirement, or simply to distribute within the field an average rate defined by decision models using other diagnostics. The objective of this work was to evaluate the capacity of active canopy sensors to determine yield and N application requirements within a site at jointing stage (Feeks... A.G. Berger, E. Hoffman, N. Fassana, F. Alfonso |
6. Forecasting Crop Yield Using Multi-Layered, Whole-Farm Data Sets and Machine LearningThe ultimate goal of Precision Agriculture is to improve decision making in the business of farming. Many broadacre farmers now have a number of years of crop yield data for their fields which are often augmented with additional spatial data, such as apparent soil electrical conductivity (ECa), soil gamma radiometrics, terrain attributes and soil sample information. In addition there are now freely available public datasets, such as rainfall, digital soil maps and archives of satellite remote... P. Filippi, E.J. Jones, M. Fajardo, B.M. Whelan, T.F. Bishop |
7. Developing a Machine Learning and Proximal Sensing-based In-season Site-specific Nitrogen Management Strategy for Corn in the US MidwestEffective in-season site-specific nitrogen (N) management strategies are urgently needed to ensure both food security and sustainable agricultural development. Different active canopy sensor-based precision N management strategies have been developed and evaluated in different parts of the world. Recent studies evaluating several sensor-based N recommendation algorithms across the US Midwest indicated that these locally developed algorithms generally did not perform well when used broadly across... D. Li, Y. Miao, .G. Fernández, N.R. Kitchen, C. . Ransom, G.M. Bean, .E. Sawyer, J.J. Camberato, .R. Carter, R.B. Ferguson, D.W. Franzen, D.W. Franzen, D.W. Franzen, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.F. Shanahan |
8. Precision Agriculture Education in Africa: Perceptions, Opportunities and Challenges, and the Way ForwardPrecision Agriculture is critical for accelerated transformation of the agrifood systems in Africa for shared prosperity and enhanced livelihoods. The paper presents an overview of the perceptions of faculty, undergraduate and postgraduate students from Ghanaian universities about PA education, and its opportunities and challenges. The study involves a case study of two public universities, the University of Cape Coast and the Technical University of Cape Coast, respectively a and a desk review... K.A. Frimpong |
9. Enhancing On-farm Rice Yields, Water Productivity, and Profitability Through Alternate Wetting and Drying Technology in Dry Zones of West AfricaIrrigated rice farming is crucial for meeting the growing rice demand and ensuring global food security. Yet, its substantial water demand poses a significant challenge in light of increasing water scarcity. Alternate wetting and drying irrigation (AWD), one of the most widely advocated water-saving technologies, was recently introduced as a prospective solution in the semi-arid zones of West Africa. However, it remains debatable whether AWD can achieve the multiple goals of saving water while... Y.J. Johnson, M. Becker, E.R. Dossou-yovo, K. Saito |
10. A Digital Twin for Arable Crops and for GrassThere is an opportunity to use process-based cropping systems models (CSMs) to support tactical farm management decisions, by monitoring the status of the farm, by predicting what will happen in the next few weeks, and by exploring scenarios. In practice, the responses of a CSM will deviate more and more from reality as time progresses because the model is an abstraction of the real system and only approximates the responses of the real system. This limitation may be overcome by using the CSM... F. Van evert, P. Van oort, B. Maestrini, A. Pronk, S. Boersma, M. Kopanja, G. Mimić |
11. Capacity Building of African Young Scientists in Precision Agriculture Through Cross-regional Academic Mobility for Enhanced Climate-smart Agri-food System: an Intra Africa Mobility Project on Precision AgricultureClimate change is one of the main problems affecting food and nutrition globally, particularly in sub-Saharan Africa. Adapting to and/or mitigating climate change in the agri-food sector requires merging information technologies, genetic innovations, and sustainable farming practices to empower the agricultural youth sector to create effective and locally adapted solutions. Precision Agriculture applied to crops (PAAC), has been advocated as a strategic solution to mitigate/adapt agriculture at... N. Fassinou hotegni, A. Karangwa, A. Manyatsi, K.A. Frimpong, M. Amri, D. Cammarano, C. Lesueur, J. Taylor, S. Phillips, E. Achigan-dako |
12. Analysis of Yield Gaps in Sub-Saharan African Cereal Production SystemsFood production in sub-Saharan Africa (SSA) is one of the lowest and keeps declining across farmers’ fields season after season (Assefa et al., 2020; F Affholder, 2013). Yield gaps in cereal cropping systems have been reported by many researchers, attesting to the existence of huge variability in production levels of cereals such as corn, wheat, sorghum, rice and millet. across SSA. It is still unclear whether the yield gaps are similar in size or driven by similar factors across different... E. Odoom, K.A. Frimpong, S. Phillips |
13. Predicting, Mapping, and Understanding the Drivers of Grain Protein Content Variability – Utilising John Deere’s New Harvestlab 3000 Grain Sensing SystemGrain protein content (GPC) is a key determinant of the prices that grain growers receive, and the rising cost of production is shifting management focus towards optimising this to maximise return on investment. In 2023, John Deere released the HarvestLab 3000TM Grain Sensing system in Australia for real-time, on-the-go measurement of protein, starch, and oil values for wheat, barley, and canola. However, while the uptake of these sensors is increasing, GPC maps are not available for... M.J. Tilse, P. Filippi, T. Bishop |
14. Are Pulses Really More Variable Than Cereals? a Country-wide Analysis of Within-field VariabilityIn Australia, pulses are underutilised by growers relative to cereal crops. There is significant global interest in growing pulses to provide more plant protein, and they also provide a string of agronomic and environmental benefits, such as their ability to fix nitrogen, and provide a pest and disease break for cereal crops. Many studies attribute this underutilisation to pulses exhibiting greater within-field yield variability than cereals. However, this has never been comprehensively examined... P. Filippi, T. Bishop, D. Al-shammari, T. Mcpherson |
15. Transforming Precision Agriculture Education, Research and Outreach in Sub-saharan Africa Through Intra-africa CooperationProductivity and profitability of sub-Saharan (SSA) agriculture can be enhanced greatly through the adoption of precision agriculture technologies and tools. However, until 2020 when the African Plant Nutrition Institute (APNI) established the African Association for Precision Agriculture (AAPA), most SSA PA enthusiast worked in isolation. The AAPA was formed to innovate Africa’s agricultural industry by connecting PA science to its practice and disseminate PA tailored to the needs... K.A. Frimpong, S. Phillips, V. Aduramigba-modupe, N. Fassinou hotegni, M. Mechri, M. Mishamo, J.M. Sogbedji, Z. hazzoumi, R. Chikowo, M. Fodjo kamdem |
16. On Data-driven Crop Yield Modelling, Predicting, and Forecasting and the Common Flaws in Published StudiesThere has been a recent surge in the number of studies that aim to model crop yield using data-driven approaches. This has largely come about due to the increasing amounts of remote sensing (e.g. satellite imagery) and precision agriculture data available (e.g. high-resolution crop yield monitor data), and abundance of machine learning modelling approaches. This is a particular problem in the field of Precision Agriculture, where many studies will take a crop yield map (or a small number), create... P. Filippi, T. Bishop, S. Han, I. Rund |
17. Advancements in Agrivoltaics: Autonomous Robotic Mowing for Enhanced Management in Solar FarmsAgrivoltaics – the co-location of solar energy installations and agriculture beneath or between rows of photovoltaic panels – has gained prominence as a sustainable and efficient approach to land use. The US has over 2.8 GW in Agrivoltaics, integrating crop cultivation with solar energy. However, effective vegetation management is critical for solar panel efficiency. Flat, sunny agricultural land accommodates solar panels and crops efficiently. The challenge lies in managing grass... S. Behera, S. Pitla |
18. Deep Learning to Estimate Sorghum Yield with Uncrewed Aerial System ImageryIn the face of growing demand for food, feed, and fuel, plant breeders are challenged to accelerate yield potential through quick and efficient cultivar development. Plant breeders often conduct large-scale trials in multiple locations and years to address these goals. Sorghum breeding, integral to these efforts, requires early, accurate, and scalable harvestable yield predictions, traditionally possible only after harvest, which is time-consuming and laborious. This research harnesses high-throughput... M.A. Bari, A. Bakshi, T. Witt, D. Caragea, K. Jagadish, T. Felderhoff |
19. In-Field and Loading Crop: A Machine Learning Approach to Classify Machine Harvesting Operating ModeThis paper addresses the complex issue of classifying mode of operation (active, idle, stationary unloading, on-the-go unloading, turning) and coordinating agricultural machinery. Agricultural machinery operators must operate within a limited time window to optimize operational efficiency and reduce costs. Existing algorithms for classifying machinery operating modes often rely on heuristic methods. Examples include rules conditioned on machine speed, bearing angle and operational time... D. Buckmaster, J. Krogmeier, J. Evans, Y. Zhang, M. Glavin, D. Byrne, S.J. Harkin |
20. Balancing Water Productivity and Nutrient Use Efficiency: Evaluation of Alternate Wetting and Severe Drying TechnologyWith emerging water scarcity and rising fertilizer prices, it is crucial to optimize future water use while maintaining yield and nutrient efficiency in irrigated rice. Alternate wetting and moderate drying has proven to be an efficient water-saving irrigation technology for the semi-arid zones of West Africa, reducing water inputs without yield penalty. Alternate wetting and severe drying (AWD30), by re-irrigating fields only when the water table reaches 30 cm below the soil surface, may further... J. Johnson, M. Becker, J.P. Kaboré, E.R. Dossou-yovo, K. Saito |
21. Africa Regional Meeting... K.A. Frimpong |
22. African Association for Precision Agriculture Community Meeting... K.A. Frimpong, V. Aduramigba-modupe, N. Fassinou hotegni |