Proceedings
Authors
| Filter results2 paper(s) found. |
|---|
1. Deep Learning-Based Corn Disease Tracking Using RTK Geolocated UAS ImageryDeep learning-based solutions for precision agriculture have achieved promising results in recent times. Deep learning has been used to accurately classify different disease types and disease severity estimation as an initial stage for developing robust disease management systems. However, tracking the spread of diseases, identifying disease hot spots within cornfields, and notifying farmers using deep learning and UAS imagery remains a critical research gap. Therefore, in this study, high resolution,... A. Ahmad, V. Aggarwal, D. Saraswat, A. El gamal, G. Johal |
2. Within Field Cotton Yield Prediction Using Temporal Satellite Imagery Combined with Deep LearningCrop yield prediction at the field scale plays a pivotal role in enhancing agricultural management, a vital component in addressing global food security challenges. Regional or county-level data, while valuable for broader agricultural planning, often lacks the precision required by farmers for effective and timely field management. The primary obstacle in utilizing satellite imagery to forecast crop yields at the field level lies in its low temporal and spatial resolutions. This study aims to... R. Karn, O. Adedeji, B.P. Ghimire, A. Abdalla, V. Sheng, G. Ritchie, W. Guo |