Proceedings

Find matching any: Reset
Jurado-Expósito, M
Chou, T
Trotter, M.G
Add filter to result:
Authors
Chou, T
Yeh, M
Chen, J
Basso, B
Trotter, M.G
Lamb, D.W
Hinch, G.N
Guppy, C.N
Lamb, D.W
Trotter, M.G
Schneider, D
Sauer, B
Guppy, C.N
Trotter, M.G
Lamb, D.W
Delgado, J.A
Donald, G.E
Trotter, M.G
Lamb, D.W
Levow, G
van Es, H.M
Trotter, M.G
Cosby , A.M
Garcia-Torres, L
Peña-Barragán, J.M
Gómez-Candón, D
López-Granados, F
Jurado-Expósito, M
Topics
Modeling and Geo-statistics
Precision Livestock Management
Sensor Application in Managing In-season Crop Variability
Precision Nutrient Management
Profitability, Sustainability and Adoption
Precision Horticulture
Type
Poster
Oral
Year
2012
2010
2014
2008
Home » Authors » Results

Authors

Filter results7 paper(s) found.

1. GNSS Tracking Of Livestock: Towards Variable Fertilizer Strategies For The Grazing Industry

This study reveals the potential for GPS tracking in the grazing industry. By monitoring the locations and movement of livestock, times of peak grazing activity can be identified and these can in turn produce maps of preferred grazing areas, and by examining residency times provide an indication of spatial variability in grazing pressure. A comparison of grazing preference can be made to similarly inferred camping areas to understand the potential redistribution of nutrients within a paddock.... M.G. Trotter, D.W. Lamb, G.N. Hinch, C.N. Guppy

2. Ultra Low Level Aircraft (ULLA) As A Platform For Active Optical Sensing Of Crop Biomass

Crop producers requiring crop biomass maps to support timely application of in-season fertilisers, pesticides or growth regulators rely on either on-ground active sensors or airborne/satellite imagery. Active crop sensing (for example using Yara N-SensorTM, GreenseekerTM or CropcircleTM) can only be used when the crop is accessible by person or vehicle, and extensive, high-resolution coverage is time consuming. On the other hand, airborne or satellite imaging is... D.W. Lamb, M.G. Trotter, D. Schneider

3. Matching Nitrogen To Plant Available Water For Malting Barley On Highly Constrained Vertosol Soil

Crop yield monitoring, high resolution aerial imagery and electromagnetic induction (EMI) soil sensing are three widely used techniques in precision agriculture (PA). Yield maps provide an indication of the crop’s response to a particular management regime in light of spatially-variable constraints. Aerial imagery provides timely and accurate information about photosynthetically-active biomass during crop growth and EMI indicates spatial variability in soil texture, salinity and/or... B. Sauer, C.N. Guppy, M.G. Trotter, D.W. Lamb, J.A. Delgado

4. Precision Livestock Management: An Example Of Pasture Monitoring In Eastern Australian Pastures Using Proximal And Remote Sensing Tools

  Pasture monitoring Australian rangelands by Remote Sensing   G.E.Donald.  CSIRO Livestock Industries, Locked Bag 1, Armidale NSW, 2350 Australia     A series of spatial models and datasets were jointly developed to estimate pasture biomass as feed on offer (FOO®) and pasture growth rate (PGR®) in the south-west... G.E. Donald, M.G. Trotter, D.W. Lamb, G. Levow, H.M. Van es

5. I-SALUS: New Web Based Spatial Systems for Simulating Crop Yield and Environmental Impact

  SALUS (System Approach to Land Use Sustainability) model is designed to simulate the impact of agronomic management on yield and environmental impact. SALUS model has new approaches and algorithms for simulating soil carbon, nitrogen, phosphorous, tillage, soil water balance and yield components. In the past, the use of the crop model was not easy for general... T. Chou, M. Yeh, J. Chen, B. Basso

6. Introducing Precision Agriculture To High School Students In Australia

There is a growing need for tertiary qualified graduates in the Australian agricultural industry with only 7% of those employed in the sector holding a tertiary qualification compared to over 25% for the national workforce. With the need to greatly increase food and fibre production to feed and clothe a growing global population, and the adoption of precision agriculture technologies playing a huge part in this task, it is worrying that the demand for tertiary courses in agriculture in Australia... M.G. Trotter, A.M. Cosby

7. A Software for Managing Remotely Sensed Imagery of Orchards Plantations for Precision Agriculture

Agronomic and environmental characteristics of fruit orchards/ forests can be automatically assessed from remote-sensing images by a computer programme named Clustering Assessment (CLUAS®). The aim of this paper is to describe the operational procedure of CLUAS and illustrate examples of the information provided for citrus orchards and Mediterranean forest. CLUAS® works as an additional menu (“add-on”) of ENVI®, a world-wide known image-processing programme, and operates... L. Garcia-torres, J.M. Peña-barragán, D. Gómez-candón, F. López-granados, M. Jurado-expósito